We prove the propagation of regularity, uniformly in time, for the scaled solutions of the one-dimensional dissipative Maxwell models introduced in [D. Ben-Avraham, E. Ben-Naim, K. Lindenberg, A. Rosas, Self-similarity in random collision processes, Phys. Rev. E 68 (2003) R050103]. This result together with the weak convergence towards the stationary state proven in [L. Pareschi, G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models, J. Stat. Phys. 124 (2–4) (2006) 747–779] implies the strong convergence in Sobolev norms and in the L1 norm towards it depending on the regularity of the initial data. As a consequence, the original nonscaled solutions are also proved to be convergent in L1 towards the corresponding self-similar homogeneous cooling state. The proof is based on the (uniform in time) control of the tails of the Fourier transform of the solution, and it holds for a large range of values of the mixing parameters. In particular, in the case of the one-dimensional inelastic Boltzmann equation, the result does not depend of the degree of inelasticity.

Strong convergence towards self-similarity for one-dimensional dissipative Maxwell models / G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 257:7(2009 Oct), pp. 2291-2324.

Strong convergence towards self-similarity for one-dimensional dissipative Maxwell models

E. Terraneo
Penultimo
;
2009

Abstract

We prove the propagation of regularity, uniformly in time, for the scaled solutions of the one-dimensional dissipative Maxwell models introduced in [D. Ben-Avraham, E. Ben-Naim, K. Lindenberg, A. Rosas, Self-similarity in random collision processes, Phys. Rev. E 68 (2003) R050103]. This result together with the weak convergence towards the stationary state proven in [L. Pareschi, G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models, J. Stat. Phys. 124 (2–4) (2006) 747–779] implies the strong convergence in Sobolev norms and in the L1 norm towards it depending on the regularity of the initial data. As a consequence, the original nonscaled solutions are also proved to be convergent in L1 towards the corresponding self-similar homogeneous cooling state. The proof is based on the (uniform in time) control of the tails of the Fourier transform of the solution, and it holds for a large range of values of the mixing parameters. In particular, in the case of the one-dimensional inelastic Boltzmann equation, the result does not depend of the degree of inelasticity.
Asymptotic behavior; Dissipative Boltzmann equation; Granular gases
Settore MAT/05 - Analisi Matematica
ott-2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/151584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact