We develop a simple model to evaluate the daily flow discharges in the ablation season for the 11 km2 Pantano basin in the Retiche Italian Alps, based upon the data gathered during a three years field campaign. The Pantano basin embeds the Venerocolo debris covered and the Avio debris free glaciers, covering 2.14 km2 in the Adamello Group, where the widest Italian glacier Adamello is located. First, degree-day models based upon air temperature are tuned to calculate snow and ice melt at daily scale. Glaciers’ meteorological data are collected from an automatic weather station (AWS), operating on the glacier during summer 2007. The melt factors in the debris covered areas of the glacier are estimated against debris thickness, using a data driven parameterization. The flow discharge from the catchment is estimated using semi distributed flow routing for the ablation seasons of four years, from 2006 to 2009. The predicted discharges are compared to those derived from inverse reservoir''s routing at the Benedetto lake, catching the basin outflow. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged glacierized areas, including those with debris covered ice, widely diffused and yet poorly understood. Pending accurate parameterization the approach is usable for water resources evaluation and for long term assessment of the climate change impact on the glacierized areas within the Alps.

Flow prediction in high altitude ungauged catchment: a case study in the Italian Alps (Pantano Basin, Adamello Group) / D. Bocchiola, C. Mihalcea, G. Diolaiuti, B. Mosconi, C. Smiraglia, R. Rosso. - In: ADVANCES IN WATER RESOURCES. - ISSN 0309-1708. - 33:10(2010), pp. 1224-1234. [10.1016/j.advwatres.2010.06.009]

Flow prediction in high altitude ungauged catchment: a case study in the Italian Alps (Pantano Basin, Adamello Group)

C. Mihalcea;G. Diolaiuti;B. Mosconi;C. Smiraglia;
2010

Abstract

We develop a simple model to evaluate the daily flow discharges in the ablation season for the 11 km2 Pantano basin in the Retiche Italian Alps, based upon the data gathered during a three years field campaign. The Pantano basin embeds the Venerocolo debris covered and the Avio debris free glaciers, covering 2.14 km2 in the Adamello Group, where the widest Italian glacier Adamello is located. First, degree-day models based upon air temperature are tuned to calculate snow and ice melt at daily scale. Glaciers’ meteorological data are collected from an automatic weather station (AWS), operating on the glacier during summer 2007. The melt factors in the debris covered areas of the glacier are estimated against debris thickness, using a data driven parameterization. The flow discharge from the catchment is estimated using semi distributed flow routing for the ablation seasons of four years, from 2006 to 2009. The predicted discharges are compared to those derived from inverse reservoir''s routing at the Benedetto lake, catching the basin outflow. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged glacierized areas, including those with debris covered ice, widely diffused and yet poorly understood. Pending accurate parameterization the approach is usable for water resources evaluation and for long term assessment of the climate change impact on the glacierized areas within the Alps.
Settore GEO/04 - Geografia Fisica e Geomorfologia
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/151458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 47
social impact