Defects are believed to play a fundamental role in the supersolid state of 4He. We have studied solid 4He in two dimensions (2D) as a function of the number of vacancies nv, up to 30, inserted in the initial configuration at ρ = 0.0765 Å − 2, close to the melting density, with the exact zero-temperature shadow path integral ground state method. The crystalline order is found to be stable also in the presence of many vacancies and we observe two completely different regimes. For small nv, up to about 6, vacancies form a bound state and cause a decrease of the crystalline order. At larger nv, the formation energy of an extra vacancy at fixed density decreases by one order of magnitude to about 0.6 K. It is no longer possible to recognize vacancies in the equilibrated state because they mainly transform into quantum dislocations and crystalline order is found almost independently of how many vacancies have been inserted in the initial configuration. The one-body density matrix in this latter regime shows a non-decaying large distance tail: dislocations, that in 2D are point defects, turn out to be mobile, their number is fluctuating, and they are able to induce exchanges of particles across the system mainly triggered by the dislocation cores. These results indicate that the notion of the incommensurate versus the commensurate state loses meaning for solid 4He in 2D, because the number of lattice sites becomes ill defined when the system is not commensurate. Crystalline order is found to be stable also in 3D in the presence of up to 100 vacancies.

Quantum dislocation : the fate of multiple vacancies in two-dimensional solid 4He / M. Rossi, E. Vitali, D. E. Galli, L. Reatto. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 22:14(2010), pp. 145401.145401.1-145401.145401.10. [10.1088/0953-8984/22/14/145401]

Quantum dislocation : the fate of multiple vacancies in two-dimensional solid 4He

M. Rossi
Primo
;
D.E. Galli
Penultimo
;
L. Reatto
Ultimo
2010

Abstract

Defects are believed to play a fundamental role in the supersolid state of 4He. We have studied solid 4He in two dimensions (2D) as a function of the number of vacancies nv, up to 30, inserted in the initial configuration at ρ = 0.0765 Å − 2, close to the melting density, with the exact zero-temperature shadow path integral ground state method. The crystalline order is found to be stable also in the presence of many vacancies and we observe two completely different regimes. For small nv, up to about 6, vacancies form a bound state and cause a decrease of the crystalline order. At larger nv, the formation energy of an extra vacancy at fixed density decreases by one order of magnitude to about 0.6 K. It is no longer possible to recognize vacancies in the equilibrated state because they mainly transform into quantum dislocations and crystalline order is found almost independently of how many vacancies have been inserted in the initial configuration. The one-body density matrix in this latter regime shows a non-decaying large distance tail: dislocations, that in 2D are point defects, turn out to be mobile, their number is fluctuating, and they are able to induce exchanges of particles across the system mainly triggered by the dislocation cores. These results indicate that the notion of the incommensurate versus the commensurate state loses meaning for solid 4He in 2D, because the number of lattice sites becomes ill defined when the system is not commensurate. Crystalline order is found to be stable also in 3D in the presence of up to 100 vacancies.
Settore FIS/03 - Fisica della Materia
2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/150337
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact