Plant auto-inhibited Ca2+-ATPase 8 (ACA8) and animal plasma membrane Ca2+-ATPase 4b (PMCA4b) are representatives of plant and animal 2B P-type ATPases with a regulatory auto-inhibitory domain localized at the N- and C-terminus, respectively. To check whether the regulatory domain works independently of its terminal localization and if auto-inhibitory domains of different organisms are interchangeable, a mutant in which the N-terminus of ACA8 is repositioned at the C-terminus and chimeras in which PMCA4b C-terminus is fused to the N- or C-terminus of ACA8 were analysed in the yeast mutant K616 devoid of endogenous Ca2+-ATPases. Results show that the regulatory function of the terminal domain is independent from its position in ACA8 and that the regulatory domain belonging to PMCA4b is able to at least partially auto-inhibit ACA8.

Plant and animal type 2B Ca2+-ATPases: evidence for a common auto-inhibitory mechanism / M.C. Bonza, L. Luoni. - In: FEBS LETTERS. - ISSN 0014-5793. - 584:23(2010), pp. 4783-4788. [10.1016/j.febslet.2010.11.008]

Plant and animal type 2B Ca2+-ATPases: evidence for a common auto-inhibitory mechanism

M.C. Bonza
Primo
;
L. Luoni
Ultimo
2010

Abstract

Plant auto-inhibited Ca2+-ATPase 8 (ACA8) and animal plasma membrane Ca2+-ATPase 4b (PMCA4b) are representatives of plant and animal 2B P-type ATPases with a regulatory auto-inhibitory domain localized at the N- and C-terminus, respectively. To check whether the regulatory domain works independently of its terminal localization and if auto-inhibitory domains of different organisms are interchangeable, a mutant in which the N-terminus of ACA8 is repositioned at the C-terminus and chimeras in which PMCA4b C-terminus is fused to the N- or C-terminus of ACA8 were analysed in the yeast mutant K616 devoid of endogenous Ca2+-ATPases. Results show that the regulatory function of the terminal domain is independent from its position in ACA8 and that the regulatory domain belonging to PMCA4b is able to at least partially auto-inhibit ACA8.
P-type ATPases ; Ca2+-ATPases ; Auto-inhibition ; Chimeric protein
Settore BIO/04 - Fisiologia Vegetale
2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/149981
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact