Let G be a finite group. An element g∈G is a vanishing element of G if there exists an irreducible complex character χ of G such that χ(g) = 0: if this is the case, we say that the conjugacy class of g in G is a vanishing conjugacy class of G. In this paper we show that, if the size of every vanishing conjugacy class of G is not divisible by a given prime number p, then G has a normal p-complement and abelian Sylow p-subgroups.
Groups whose vanishing class sizes are not divisible by a given prime / S. Dolfi, E. Pacifici, L. Sanus. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - 94:4(2010), pp. 311-317. [10.1007/s00013-010-0107-3]
Groups whose vanishing class sizes are not divisible by a given prime
E. PacificiSecondo
;
2010
Abstract
Let G be a finite group. An element g∈G is a vanishing element of G if there exists an irreducible complex character χ of G such that χ(g) = 0: if this is the case, we say that the conjugacy class of g in G is a vanishing conjugacy class of G. In this paper we show that, if the size of every vanishing conjugacy class of G is not divisible by a given prime number p, then G has a normal p-complement and abelian Sylow p-subgroups.| File | Dimensione | Formato | |
|---|---|---|---|
|
2010VanishingClasses.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
225.46 kB
Formato
Adobe PDF
|
225.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
10.1007_s00013-010-0107-3.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
109.85 kB
Formato
Adobe PDF
|
109.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




