Loss of articular cartilage through injury or disease presents major clinical challenges also because cartilage has very poor regenerative capacity, giving rise to the development of biological approaches. As autologous blood product, platelet-rich plasma (PRP) provides a promising alternative to surgery by promoting safe and natural healing. Here we tested the possibility that PRP might be effective as an anti-inflammatory agent, providing an attractive basis for regeneration of articular cartilage, and two principal observations were done. First, activated PRP in chondrocytes reduced the transactivating activity of NF-kB, critical regulator of the inflammatory process, and decreased the expression of COX2 and CXCR4 target genes. By analyzing a panel of cytokines with different biological significance, in activated PRP we observed increases in hepatocyte growth factor (HGF), interleukin-4 and tumor necrosis factor-alpha (TNF-alpha). HGF and TNF-alpha, by disrupting NF-kB-transactivating activity, were important for the anti-inflammatory function of activated PRP. The key molecular mechanisms involved in PRP-inhibitory effects on NF-kB activity were for HGF the enhanced cellular IkBalpha expression, that contributed to NF-kB-p65 subunit retention in the cytosol and nucleo-cytoplasmic shuttling, and for TNF-alpha the p50/50 DNA-binding causing inhibition of target-gene expression. Second, activated PRP in U937-monocytic cells reduced chemotaxis by inhibiting chemokine transactivation and CXCR4-receptor expression, thus possibly controlling local inflammation in cartilage. In conclusion, activated PRP is a promising biological therapeutic agent, as a scaffold in micro-invasive articular cartilage regeneration, not only for its content of proliferative/differentiative growth factors, but also for the presence of anti-inflammatory agents including HGF.

Molecular basis of anti-inflammatory action of platelet rich plasma on human chondrocytes : mechanisms of NF-kB inhibition via HGF / P. Bendinelli, E. Matteucci, G. Dogliotti, M.M. Corsi, G. Banfi, P. Maroni, M.A. Desiderio. - In: JOURNAL OF CELLULAR PHYSIOLOGY. - ISSN 0021-9541. - 225:3(2010 Nov), pp. 757-766. [10.1002/jcp.22274]

Molecular basis of anti-inflammatory action of platelet rich plasma on human chondrocytes : mechanisms of NF-kB inhibition via HGF

P. Bendinelli
Primo
;
E. Matteucci
Secondo
;
G. Dogliotti;M.M. Corsi;G. Banfi;P. Maroni
Penultimo
;
M.A. Desiderio
Ultimo
2010

Abstract

Loss of articular cartilage through injury or disease presents major clinical challenges also because cartilage has very poor regenerative capacity, giving rise to the development of biological approaches. As autologous blood product, platelet-rich plasma (PRP) provides a promising alternative to surgery by promoting safe and natural healing. Here we tested the possibility that PRP might be effective as an anti-inflammatory agent, providing an attractive basis for regeneration of articular cartilage, and two principal observations were done. First, activated PRP in chondrocytes reduced the transactivating activity of NF-kB, critical regulator of the inflammatory process, and decreased the expression of COX2 and CXCR4 target genes. By analyzing a panel of cytokines with different biological significance, in activated PRP we observed increases in hepatocyte growth factor (HGF), interleukin-4 and tumor necrosis factor-alpha (TNF-alpha). HGF and TNF-alpha, by disrupting NF-kB-transactivating activity, were important for the anti-inflammatory function of activated PRP. The key molecular mechanisms involved in PRP-inhibitory effects on NF-kB activity were for HGF the enhanced cellular IkBalpha expression, that contributed to NF-kB-p65 subunit retention in the cytosol and nucleo-cytoplasmic shuttling, and for TNF-alpha the p50/50 DNA-binding causing inhibition of target-gene expression. Second, activated PRP in U937-monocytic cells reduced chemotaxis by inhibiting chemokine transactivation and CXCR4-receptor expression, thus possibly controlling local inflammation in cartilage. In conclusion, activated PRP is a promising biological therapeutic agent, as a scaffold in micro-invasive articular cartilage regeneration, not only for its content of proliferative/differentiative growth factors, but also for the presence of anti-inflammatory agents including HGF.
Settore MED/05 - Patologia Clinica
Settore MED/04 - Patologia Generale
Settore BIO/12 - Biochimica Clinica e Biologia Molecolare Clinica
nov-2010
Article (author)
File in questo prodotto:
File Dimensione Formato  
nf-kb.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 819.06 kB
Formato Adobe PDF
819.06 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/148159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 365
  • ???jsp.display-item.citation.isi??? 325
social impact