In this paper we show how one can get stochastic solutions of Stochastic Multi-objective Problem (SMOP) using goal programming models. In literature it is well known that one can reduce a SMOP to deterministic equivalent problems and reduce the analysis of a stochastic problem to a collection of deterministic problems. The first sections of this paper will be devoted to the introduction of deterministic equivalent problems when the feasible set is a random set and we show how to solve them using goal programming technique. In the second part we try to go more in depth on notion of SMOP solution and we suppose that it has to be a random variable. We will present stochastic goal programming model for finding stochastic solutions of SMOP. Our approach requires more computational time than the one based on deterministic equivalent problems due to the fact that several optimization programs (which depend on the number of experiments to be run) needed to be solved. On the other hand, since in our approach we suppose that a SMOP solution is a random variable, according to the Central Limit Theorem the larger will be the sample size and the more precise will be the estimation of the statistical moments of a SMOP solution. The developed model will be illustrated through numerical examples

A generalized stochastic goal programming model / B. Aouni, D. La Torre. - In: APPLIED MATHEMATICS AND COMPUTATION. - ISSN 0096-3003. - 215:12(2010), pp. 4347-4357. [10.1016/j.amc.2009.12.065]

### A generalized stochastic goal programming model

#### Abstract

In this paper we show how one can get stochastic solutions of Stochastic Multi-objective Problem (SMOP) using goal programming models. In literature it is well known that one can reduce a SMOP to deterministic equivalent problems and reduce the analysis of a stochastic problem to a collection of deterministic problems. The first sections of this paper will be devoted to the introduction of deterministic equivalent problems when the feasible set is a random set and we show how to solve them using goal programming technique. In the second part we try to go more in depth on notion of SMOP solution and we suppose that it has to be a random variable. We will present stochastic goal programming model for finding stochastic solutions of SMOP. Our approach requires more computational time than the one based on deterministic equivalent problems due to the fact that several optimization programs (which depend on the number of experiments to be run) needed to be solved. On the other hand, since in our approach we suppose that a SMOP solution is a random variable, according to the Central Limit Theorem the larger will be the sample size and the more precise will be the estimation of the statistical moments of a SMOP solution. The developed model will be illustrated through numerical examples
##### Scheda breve Scheda completa Scheda completa (DC) Deterministic equivalent problems; Stochastic goal programming; Stochastic Pareto optimal solutions
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
##### Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/2434/146340`
##### Citazioni
• ND
• 46
• 36