OBJECTIVE: Endostatin is an anti-angiogenic agent that blocks matrix-metalloproteinase-2 and inhibits endothelial cell proliferation. Currently, endostatin is available through recombinant technology, which limits its broader use. In this study, a synthetic endostatin fragment (EF) was analyzed to determine its anti-angiogenic properties when locally delivered by controlled-release polymers and to establish its effect as a treatment for experimental gliomas. METHODS: Cytotoxicity of EF against 9L gliosarcoma and F98 glioma was determined in vitro. EF was loaded into polyanhydride-poly-(bis- [carboxyphenoxy-propane]-sebacic-acid) (pCPP:SA) polymers at increasing concentrations. Pharmacokinetics of the EF/polymer formulations were defined in vitro. Anti-angiogenic properties of the EF/polymer formulations were evaluated in the rat-cornea micropocket assay. Toxicity and efficacy of locally delivered EF polymers either alone or combined with systemic bischloroethylnitrosourea (carmustine) were determined in rats intracranially challenged with 9L gliosarcoma. RESULTS: EF showed scarce cytotoxicity against 9L and F98 in vitro. EF/pCPP:SA formulations showed sustained release by day 19. Mean corneal angiogenesis index 20 days after tumor implantation was 4.5 (plus or minus) 0.7 for corneas implanted with 40% EF/pCPP:SA compared with controls (8.5 (plus or minus) 1.3, P = 0.02). Intracranial efficacy studies showed that EF polymers alone did not prolong animal survival. Combination of 40% EF/pCPP:SA polymers with systemic bischloroethylnitrosourea (carmustine) prolonged survival (median survival of 44 d, P = 0.001) and generated 33% long-term survivors. CONCLUSION: Controlled-release polymers can effectively deliver a biologically active EF in a sustained fashion. EF inhibits angiogenesis in vitro and in vivo, and even though EF does not prolong survival as a single agent, it exhibits a synergistic effect when combined with systemic bischloroethylnitrosourea (carmustine) in the intracranial 9L gliosarcoma model.

Local delivery of a synthetic endostatin fragment for the treatment of experimental gliomas / G. Pradilla, F.G. Legnani, G. Petrangolini, P. Francescato, F. Chillemi, B.M. Tyler, S.M. Gaini, H. Brem, A. Olivi, F. Dimeco. - In: NEUROSURGERY. - ISSN 0148-396X. - 57:5(2005), pp. 1032-1040. [10.1227/01.NEU.0000180059.33665.c1]

Local delivery of a synthetic endostatin fragment for the treatment of experimental gliomas

F. Dimeco
2005

Abstract

OBJECTIVE: Endostatin is an anti-angiogenic agent that blocks matrix-metalloproteinase-2 and inhibits endothelial cell proliferation. Currently, endostatin is available through recombinant technology, which limits its broader use. In this study, a synthetic endostatin fragment (EF) was analyzed to determine its anti-angiogenic properties when locally delivered by controlled-release polymers and to establish its effect as a treatment for experimental gliomas. METHODS: Cytotoxicity of EF against 9L gliosarcoma and F98 glioma was determined in vitro. EF was loaded into polyanhydride-poly-(bis- [carboxyphenoxy-propane]-sebacic-acid) (pCPP:SA) polymers at increasing concentrations. Pharmacokinetics of the EF/polymer formulations were defined in vitro. Anti-angiogenic properties of the EF/polymer formulations were evaluated in the rat-cornea micropocket assay. Toxicity and efficacy of locally delivered EF polymers either alone or combined with systemic bischloroethylnitrosourea (carmustine) were determined in rats intracranially challenged with 9L gliosarcoma. RESULTS: EF showed scarce cytotoxicity against 9L and F98 in vitro. EF/pCPP:SA formulations showed sustained release by day 19. Mean corneal angiogenesis index 20 days after tumor implantation was 4.5 (plus or minus) 0.7 for corneas implanted with 40% EF/pCPP:SA compared with controls (8.5 (plus or minus) 1.3, P = 0.02). Intracranial efficacy studies showed that EF polymers alone did not prolong animal survival. Combination of 40% EF/pCPP:SA polymers with systemic bischloroethylnitrosourea (carmustine) prolonged survival (median survival of 44 d, P = 0.001) and generated 33% long-term survivors. CONCLUSION: Controlled-release polymers can effectively deliver a biologically active EF in a sustained fashion. EF inhibits angiogenesis in vitro and in vivo, and even though EF does not prolong survival as a single agent, it exhibits a synergistic effect when combined with systemic bischloroethylnitrosourea (carmustine) in the intracranial 9L gliosarcoma model.
brain tumor; controlled-release; endostatin; gliomas; local delivery polymer
Settore MED/27 - Neurochirurgia
2005
Article (author)
File in questo prodotto:
File Dimensione Formato  
Pradilla et al. - 2005 - Local Delivery of a Synthetic Endostatin Fragment for the Treatment of Experimental Gliomas - Neurosurgery(2).pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 463.65 kB
Formato Adobe PDF
463.65 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/14600
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact