We have identified structural attributes required for signal transduction through a seven-transmembrane-domain receptor. Platelets from a patient (AC) with a congenital bleeding disorder had normal shape change but reduced and reversible aggregation in response to 4 μM ADP, similar to normal platelets with blocked P2Y12 receptor. The response to 20 μM ADP, albeit still decreased, was more pronounced and was reduced by a P2Y12 antagonist, indicating some residual receptor function. ADP failed to lower the adenylyl cyclase activity stimulated by prostaglandin E1 in the patient's platelets, even though the number and affinity of 2-methylthioadenosine 5′-[33P]diphosphate-binding sites was normal. Analysis of the patient's P2Y12 gene revealed a G-to-A transition in one allele, changing the codon for Arg-256 in the sixth transmembrane domain to Gln, and a C-to-T transition in the other allele, changing the codon for Arg-265 in the third extracellular loop to Trp. Neither mutation interfered with receptor surface expression but both altered function, since ADP inhibited the forskolin-induced increase of cAMP markedly less in cells transfected with either mutant P2Y12 as compared with wild-type receptor. These studies delineate a region of P2Y12 required for normal function after ADP binding.

Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding / M. Cattaneo, ML. Zighetti, R. Lombardi, C. Martinez, A. Lecchi, PB. Conley, J. Ware, ZM. Ruggeri.. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - 100:4(2003 Feb 18), pp. 1978-1983.

Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding

M. Cattaneo
Primo
;
2003

Abstract

We have identified structural attributes required for signal transduction through a seven-transmembrane-domain receptor. Platelets from a patient (AC) with a congenital bleeding disorder had normal shape change but reduced and reversible aggregation in response to 4 μM ADP, similar to normal platelets with blocked P2Y12 receptor. The response to 20 μM ADP, albeit still decreased, was more pronounced and was reduced by a P2Y12 antagonist, indicating some residual receptor function. ADP failed to lower the adenylyl cyclase activity stimulated by prostaglandin E1 in the patient's platelets, even though the number and affinity of 2-methylthioadenosine 5′-[33P]diphosphate-binding sites was normal. Analysis of the patient's P2Y12 gene revealed a G-to-A transition in one allele, changing the codon for Arg-256 in the sixth transmembrane domain to Gln, and a C-to-T transition in the other allele, changing the codon for Arg-265 in the third extracellular loop to Trp. Neither mutation interfered with receptor surface expression but both altered function, since ADP inhibited the forskolin-induced increase of cAMP markedly less in cells transfected with either mutant P2Y12 as compared with wild-type receptor. These studies delineate a region of P2Y12 required for normal function after ADP binding.
ADP; G-protein coupled receptors; Platelet aggregation; Platelet function disorder
Settore MED/09 - Medicina Interna
18-feb-2003
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/145713
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 182
  • ???jsp.display-item.citation.isi??? 146
social impact