Stress has been shown to interact with genetic vulnerability in pathogenesis of psychiatric disorders. Here we investigated the outcome of interaction between genetic vulnerability and early-life stress, by employing a rodent model that combines an inherited trait of vulnerability in Flinders Sensitive Line (FSL) rats, with early-life stress (maternal separation). Basal differences in synaptic signaling between FSL rats and their controls were studied, as well as the consequences of early-life stress in adulthood, and their response to chronic antidepressant treatment (escitalopram). FSL rats showed basal differences in the activation of synapsin I and Erk1/2, as well as in alphaCaM kinase II/syntaxin-1 and alphaCaM kinase II/NMDA-receptor interactions in purified hippocampal synaptosomes. In addition, FSL rats displayed a blunted response of Erk-MAP kinases and other differences in the outcome of early-life stress in adulthood. Escitalopram treatment restored some but not all alterations observed in FSL rats after early-life stress. The marked alterations found in key regulators of presynaptic release/neurotransmission in the basal FSL rats, and as a result of early-life stress, suggest synaptic dysfunction. These results show that early gene-environment interaction may cause life-long synaptic changes affecting the course of depressive-like behavior and response to drugs.
Early-life stress and antidepressant treatment involve synaptic signaling and Erk kinases in a gene-environment model of depression / L. Musazzi, A. Mallei, D. Tardito, S.H. Gruber, A. El Khoury, G. Racagni, A.A. Mathé, M. Popoli. - In: JOURNAL OF PSYCHIATRIC RESEARCH. - ISSN 0022-3956. - 44:8(2010 Jun), pp. 511-520.
Early-life stress and antidepressant treatment involve synaptic signaling and Erk kinases in a gene-environment model of depression
L. MusazziPrimo
;A. MalleiSecondo
;D. Tardito;G. Racagni;M. PopoliUltimo
2010
Abstract
Stress has been shown to interact with genetic vulnerability in pathogenesis of psychiatric disorders. Here we investigated the outcome of interaction between genetic vulnerability and early-life stress, by employing a rodent model that combines an inherited trait of vulnerability in Flinders Sensitive Line (FSL) rats, with early-life stress (maternal separation). Basal differences in synaptic signaling between FSL rats and their controls were studied, as well as the consequences of early-life stress in adulthood, and their response to chronic antidepressant treatment (escitalopram). FSL rats showed basal differences in the activation of synapsin I and Erk1/2, as well as in alphaCaM kinase II/syntaxin-1 and alphaCaM kinase II/NMDA-receptor interactions in purified hippocampal synaptosomes. In addition, FSL rats displayed a blunted response of Erk-MAP kinases and other differences in the outcome of early-life stress in adulthood. Escitalopram treatment restored some but not all alterations observed in FSL rats after early-life stress. The marked alterations found in key regulators of presynaptic release/neurotransmission in the basal FSL rats, and as a result of early-life stress, suggest synaptic dysfunction. These results show that early gene-environment interaction may cause life-long synaptic changes affecting the course of depressive-like behavior and response to drugs.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.