1. The aim of this study was to investigate some of the cellular mechanisms involved in the effects caused by changes in extracellular Ca2+ concentration ([Ca2+](o)). 2. Current- and voltage-clamp experiments were carried out on acutely isolated thalamic neurons of rats. 3. Increasing [Ca2+](o) alone induced a transition of the discharge from single spike to burst mode in isolated current-clamped neurons. 4. Increasing [Ca(2+)](o) caused the voltage-dependent characteristics of the low voltage-activated (LVA) transient Ca2+ currents to shift towards positive values on the voltage axis. Changing [Ca2+](o) from 0.5 to 5 mM caused the inactivation curve to shift by 21 mV. 5. Extracellular Ca2+ blocked a steady cationic current. This current reversed at -35 mV, was scarcely affected by Mg2+ and was completely blocked by the non-selective cation channel inhibitor gadolinium (10 microM). The effect of [Ca2+](o) was mimicked by 500 microM spermine, a polyamine which acts as an agonist for the Ca(2+)-sensing receptor, and was modulated by intracellular GTP-gamma-S. 6. At the resting potential, both the voltage shift and the block of the inward current removed the inactivation of LVA calcium channels and, together with the increase in the Ca2+ driving force, favoured a rise in the low threshold Ca2+ spikes, causing the thalamic firing to change to the oscillatory mode. 7. Our data indicate that [Ca2+](o) is involved in multiple mechanisms of control of the thalamic relay and pacemaker activity. These findings shed light on the correlation between hypercalcaemia, low frequency EEG activity and symptoms such as sleepiness and lethargy described in many clinical papers.

Changes in extracellular Ca2+ can affect the pattern of discharge in rat thalamic neurons / A. Formenti, A. De Simoni, E. Arrigoni, M. Martina. - In: THE JOURNAL OF PHYSIOLOGY. - ISSN 0022-3751. - 535:Pt 1(2001), pp. 33-45.

Changes in extracellular Ca2+ can affect the pattern of discharge in rat thalamic neurons

A. Formenti;
2001

Abstract

1. The aim of this study was to investigate some of the cellular mechanisms involved in the effects caused by changes in extracellular Ca2+ concentration ([Ca2+](o)). 2. Current- and voltage-clamp experiments were carried out on acutely isolated thalamic neurons of rats. 3. Increasing [Ca2+](o) alone induced a transition of the discharge from single spike to burst mode in isolated current-clamped neurons. 4. Increasing [Ca(2+)](o) caused the voltage-dependent characteristics of the low voltage-activated (LVA) transient Ca2+ currents to shift towards positive values on the voltage axis. Changing [Ca2+](o) from 0.5 to 5 mM caused the inactivation curve to shift by 21 mV. 5. Extracellular Ca2+ blocked a steady cationic current. This current reversed at -35 mV, was scarcely affected by Mg2+ and was completely blocked by the non-selective cation channel inhibitor gadolinium (10 microM). The effect of [Ca2+](o) was mimicked by 500 microM spermine, a polyamine which acts as an agonist for the Ca(2+)-sensing receptor, and was modulated by intracellular GTP-gamma-S. 6. At the resting potential, both the voltage shift and the block of the inward current removed the inactivation of LVA calcium channels and, together with the increase in the Ca2+ driving force, favoured a rise in the low threshold Ca2+ spikes, causing the thalamic firing to change to the oscillatory mode. 7. Our data indicate that [Ca2+](o) is involved in multiple mechanisms of control of the thalamic relay and pacemaker activity. These findings shed light on the correlation between hypercalcaemia, low frequency EEG activity and symptoms such as sleepiness and lethargy described in many clinical papers.
Settore BIO/09 - Fisiologia
2001
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/12687
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact