In this study, sericin extracted from Bombyxmori silk cocoons was integrated into the well-known Tollens’ method for synthesizing Ag-NPs. Sericin successfully acted as a stabilizer while silver amine complex [Ag(NH3)2]+ was reduced by maltose. As a result, silver nanoparticles with high stability are formed. Possible functional groups related to the stabilization of NPs were investigated by Fourier-transforms infrared spectroscopy (FT-IR). Ag-Ser NPs were characterized using particle size measurements based on dynamic light scattering (DLS) and transmission electron microscopy (TEM). According to the characterization investigations, Ag-Ser NPs have characteristic (111) face-centered cubic (FFC) plane and were spherical in shape with a narrow size distribution of 20.23 ± 6.25 nm. Overall, the sericin-modified Tollens’ method for synthesizing Ag-NPs offers a simple and non-toxic production method to form nanoparticles. Colloidal stability of nanoparticles displays an essential role since their enhanced nano-properties can be diminished by an increase in size due to aggregation and agglomeration. Therefore, the effect of pH and electrolyte concentration on particle stability was investigated through the surface charge of Ag-Ser NPs using a Zeta-potential analyzer and change in absorption spectra by UV–Vis Spectroscopy. Results obtained from this study propose a potential synthesis route for Ag NP synthesis and may extend the applicability of silver nanoparticles in biotechnological researches as aseptic and therapeutic usages.

Synthesis of sericin coated silver nanoparticles (Ag-Ser) by modified Tollens’ method and evaluation of colloidal stability / M. Saracoglu, M.B. Bacinoglu, S. Mertdinc, S. Timur. - In: APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING. - ISSN 0947-8396. - 128:5(2022 May), pp. 424.1-424.10. [10.1007/s00339-022-05568-z]

Synthesis of sericin coated silver nanoparticles (Ag-Ser) by modified Tollens’ method and evaluation of colloidal stability

M.B. Bacinoglu;
2022

Abstract

In this study, sericin extracted from Bombyxmori silk cocoons was integrated into the well-known Tollens’ method for synthesizing Ag-NPs. Sericin successfully acted as a stabilizer while silver amine complex [Ag(NH3)2]+ was reduced by maltose. As a result, silver nanoparticles with high stability are formed. Possible functional groups related to the stabilization of NPs were investigated by Fourier-transforms infrared spectroscopy (FT-IR). Ag-Ser NPs were characterized using particle size measurements based on dynamic light scattering (DLS) and transmission electron microscopy (TEM). According to the characterization investigations, Ag-Ser NPs have characteristic (111) face-centered cubic (FFC) plane and were spherical in shape with a narrow size distribution of 20.23 ± 6.25 nm. Overall, the sericin-modified Tollens’ method for synthesizing Ag-NPs offers a simple and non-toxic production method to form nanoparticles. Colloidal stability of nanoparticles displays an essential role since their enhanced nano-properties can be diminished by an increase in size due to aggregation and agglomeration. Therefore, the effect of pH and electrolyte concentration on particle stability was investigated through the surface charge of Ag-Ser NPs using a Zeta-potential analyzer and change in absorption spectra by UV–Vis Spectroscopy. Results obtained from this study propose a potential synthesis route for Ag NP synthesis and may extend the applicability of silver nanoparticles in biotechnological researches as aseptic and therapeutic usages.
Agglomeration; Characterization; Colloidal stability; Method; Sericin; Silver nanoparticles; Surface functionalization; Tollens
Settore IMAT-01/A - Scienza e tecnologia dei materiali
mag-2022
22-apr-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
s00339-022-05568-z.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1201315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex 8
social impact