Traditional iris recognition systems rely on dedicated sen-sors, typically using near-infrared illumination, which demand a high degree of user cooperation. Recent studies have demonstrated the feasi-bility of performing iris recognition on samples captured from uncoopera-tive users in uncontrolled environments, including ocular images cropped from high-resolution facial portraits posted on websites and social media. These advancements are largely driven by novel artificial intelligence techniques and the availability of datasets containing ocular samples collected under non-ideal conditions. Nevertheless, the improved a ccu-racyandrobustnessofirisrecognitionmethodsintroducenewchallengesrelatedtoprivacyprotection.Thischapterexaminesrecentadvance-mentsinirisrecognitionusingsamplesobtainedfromwebsitesandsocialmedia,focusingonalgorithms,publicdatasets,privacyconcerns,andpotentialmitigationstrategies.
Iris Recognition from Websites and Social Media: State of the Art and Privacy Concerns / R. Donida Labati, V. Piuri, F. Scotti (COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE). - In: Security and Cryptography / [a cura di] P. Samarati, S. De Capitani Di Vimercati. - [s.l] : Springer Nature, 2026. - ISBN 9783032095978. - pp. 122-138 (( 20-21. SECRYPT 2023 International Conference : SECRYPT 2024, 21st International Conference : July 8-10, : Revised Selected Papers Rome : Dijon 2023-2024 [10.1007/978-3-032-09598-5_6].
Iris Recognition from Websites and Social Media: State of the Art and Privacy Concerns
R. Donida Labati
Primo
;V. PiuriPenultimo
;F. ScottiUltimo
2026
Abstract
Traditional iris recognition systems rely on dedicated sen-sors, typically using near-infrared illumination, which demand a high degree of user cooperation. Recent studies have demonstrated the feasi-bility of performing iris recognition on samples captured from uncoopera-tive users in uncontrolled environments, including ocular images cropped from high-resolution facial portraits posted on websites and social media. These advancements are largely driven by novel artificial intelligence techniques and the availability of datasets containing ocular samples collected under non-ideal conditions. Nevertheless, the improved a ccu-racyandrobustnessofirisrecognitionmethodsintroducenewchallengesrelatedtoprivacyprotection.Thischapterexaminesrecentadvance-mentsinirisrecognitionusingsamplesobtainedfromwebsitesandsocialmedia,focusingonalgorithms,publicdatasets,privacyconcerns,andpotentialmitigationstrategies.| File | Dimensione | Formato | |
|---|---|---|---|
|
bookChapter_2025_iris_web.pdf
embargo fino al 25/11/2026
Descrizione: post-print
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza:
Creative commons
Dimensione
760.84 kB
Formato
Adobe PDF
|
760.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
978-3-032-09598-5_6.pdf
accesso riservato
Descrizione: Publisher's version
Tipologia:
Publisher's version/PDF
Licenza:
Nessuna licenza
Dimensione
2.46 MB
Formato
Adobe PDF
|
2.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




