Traditional iris recognition systems rely on dedicated sen-sors, typically using near-infrared illumination, which demand a high degree of user cooperation. Recent studies have demonstrated the feasi-bility of performing iris recognition on samples captured from uncoopera-tive users in uncontrolled environments, including ocular images cropped from high-resolution facial portraits posted on websites and social media. These advancements are largely driven by novel artificial intelligence techniques and the availability of datasets containing ocular samples collected under non-ideal conditions. Nevertheless, the improved a ccu-racyandrobustnessofirisrecognitionmethodsintroducenewchallengesrelatedtoprivacyprotection.Thischapterexaminesrecentadvance-mentsinirisrecognitionusingsamplesobtainedfromwebsitesandsocialmedia,focusingonalgorithms,publicdatasets,privacyconcerns,andpotentialmitigationstrategies.

Iris Recognition from Websites and Social Media: State of the Art and Privacy Concerns / R. Donida Labati, V. Piuri, F. Scotti (COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE). - In: Security and Cryptography / [a cura di] P. Samarati, S. De Capitani Di Vimercati. - [s.l] : Springer Nature, 2026. - ISBN 9783032095978. - pp. 122-138 (( 20-21. SECRYPT 2023 International Conference : SECRYPT 2024, 21st International Conference : July 8-10, : Revised Selected Papers Rome : Dijon 2023-2024 [10.1007/978-3-032-09598-5_6].

Iris Recognition from Websites and Social Media: State of the Art and Privacy Concerns

R. Donida Labati
Primo
;
V. Piuri
Penultimo
;
F. Scotti
Ultimo
2026

Abstract

Traditional iris recognition systems rely on dedicated sen-sors, typically using near-infrared illumination, which demand a high degree of user cooperation. Recent studies have demonstrated the feasi-bility of performing iris recognition on samples captured from uncoopera-tive users in uncontrolled environments, including ocular images cropped from high-resolution facial portraits posted on websites and social media. These advancements are largely driven by novel artificial intelligence techniques and the availability of datasets containing ocular samples collected under non-ideal conditions. Nevertheless, the improved a ccu-racyandrobustnessofirisrecognitionmethodsintroducenewchallengesrelatedtoprivacyprotection.Thischapterexaminesrecentadvance-mentsinirisrecognitionusingsamplesobtainedfromwebsitesandsocialmedia,focusingonalgorithms,publicdatasets,privacyconcerns,andpotentialmitigationstrategies.
Settore INFO-01/A - Informatica
Settore IINF-05/A - Sistemi di elaborazione delle informazioni
2026
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
bookChapter_2025_iris_web.pdf

embargo fino al 25/11/2026

Descrizione: post-print
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 760.84 kB
Formato Adobe PDF
760.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
978-3-032-09598-5_6.pdf

accesso riservato

Descrizione: Publisher's version
Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1200435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact