Plug and Play (PnP) methods achieve remarkable results in the framework of image restoration problems for Gaussian data. Nonetheless, the theory available for the Gaussian case cannot be extended to the Poisson case, due to the non-Lipschitz gradient of the fidelity function, the Kullback-Leibler functional, or the absence of closed-form solution for the proximal operator of such term, leading to employ iterative solvers for the inner subproblem. In this work we extend the idea of PIDSPLIT+ algorithm, exploiting the Alternating Direction Method of Multipliers, to PnP scheme: this allows to provide a closed-form solution for the deblurring step, with no need for iterative solvers. The convergence of the method is assured by employing a firmly non-expansive denoiser. The proposed method, namely PnPSplit, is tested on different Poisson image restoration problems, showing remarkable performance even in presence of high noise level and severe blurring conditions.

Plug and Play Splitting Techniques for Poisson Image Restoration / A. Benfenati. - In: JOURNAL OF MATHEMATICAL IMAGING AND VISION. - ISSN 0924-9907. - 67:6(2025), pp. 59.1-59.16. [10.1007/s10851-025-01273-7]

Plug and Play Splitting Techniques for Poisson Image Restoration

A. Benfenati
2025

Abstract

Plug and Play (PnP) methods achieve remarkable results in the framework of image restoration problems for Gaussian data. Nonetheless, the theory available for the Gaussian case cannot be extended to the Poisson case, due to the non-Lipschitz gradient of the fidelity function, the Kullback-Leibler functional, or the absence of closed-form solution for the proximal operator of such term, leading to employ iterative solvers for the inner subproblem. In this work we extend the idea of PIDSPLIT+ algorithm, exploiting the Alternating Direction Method of Multipliers, to PnP scheme: this allows to provide a closed-form solution for the deblurring step, with no need for iterative solvers. The convergence of the method is assured by employing a firmly non-expansive denoiser. The proposed method, namely PnPSplit, is tested on different Poisson image restoration problems, showing remarkable performance even in presence of high noise level and severe blurring conditions.
No
English
Settore MATH-05/A - Analisi numerica
Articolo
Esperti anonimi
Pubblicazione scientifica
   Data Science Approach for Carbon Farming Scenarios (DaSACaF)
   DaSACaF
   FONDAZIONE CARIPLO
   2023-3293

   STILE: Sustainable Tomographic Imaging with Learning and rEgularization
   STILE
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   20225STXSB_003
2025
25-nov-2025
67
6
59
1
16
16
Pubblicato
Periodico con rilevanza internazionale
crossref
Aderisco
info:eu-repo/semantics/article
Plug and Play Splitting Techniques for Poisson Image Restoration / A. Benfenati. - In: JOURNAL OF MATHEMATICAL IMAGING AND VISION. - ISSN 0924-9907. - 67:6(2025), pp. 59.1-59.16. [10.1007/s10851-025-01273-7]
open
Prodotti della ricerca::01 - Articolo su periodico
1
262
Article (author)
Periodico con Impact Factor
A. Benfenati
File in questo prodotto:
File Dimensione Formato  
s10851-025-01273-7.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1200416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact