Background and objective: Cardiovascular hemodynamic fields provide valuable medical decision markers for coronary artery disease. Computational fluid dynamics (CFD) is the gold standard for accurate, non-invasive evaluation of these quantities in silico. In this work, we propose a time-efficient surrogate model, powered by machine learning, for the estimation of pulsatile hemodynamics based on steady-state priors. Methods: We introduce deep vectorised operators, a modelling framework for discretisation-independent learning on infinite-dimensional function spaces. The underlying neural architecture is a neural field conditioned on hemodynamic boundary conditions. Importantly, we show how relaxing the requirement of point-wise action to permutation-equivariance leads to a family of models that can be parametrised by message passing and self-attention layers. We evaluate our approach on a dataset of 74 stenotic coronary arteries extracted from coronary computed tomography angiography (CCTA) with patient-specific pulsatile CFD simulations as ground truth. Results: We show that our model produces accurate estimates of the pulsatile velocity and pressure (approximation disparity 0.368 ± 0.079) while being agnostic (p<0.05 in a one-way ANOVA test) to re-sampling of the source domain, i.e. discretisation-independent. Conclusion: This shows that deep vectorised operators are a powerful modelling tool for cardiovascular hemodynamics estimation in coronary arteries and beyond.

Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior / J. Suk, G. Nannini, P. Rygiel, C. Brune, G. Pontone, A. Redaelli, J.M. Wolterink. - In: COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE. - ISSN 0169-2607. - 271:(2025 Nov), pp. 108958.1-108958.11. [10.1016/j.cmpb.2025.108958]

Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior

G. Pontone;
2025

Abstract

Background and objective: Cardiovascular hemodynamic fields provide valuable medical decision markers for coronary artery disease. Computational fluid dynamics (CFD) is the gold standard for accurate, non-invasive evaluation of these quantities in silico. In this work, we propose a time-efficient surrogate model, powered by machine learning, for the estimation of pulsatile hemodynamics based on steady-state priors. Methods: We introduce deep vectorised operators, a modelling framework for discretisation-independent learning on infinite-dimensional function spaces. The underlying neural architecture is a neural field conditioned on hemodynamic boundary conditions. Importantly, we show how relaxing the requirement of point-wise action to permutation-equivariance leads to a family of models that can be parametrised by message passing and self-attention layers. We evaluate our approach on a dataset of 74 stenotic coronary arteries extracted from coronary computed tomography angiography (CCTA) with patient-specific pulsatile CFD simulations as ground truth. Results: We show that our model produces accurate estimates of the pulsatile velocity and pressure (approximation disparity 0.368 ± 0.079) while being agnostic (p<0.05 in a one-way ANOVA test) to re-sampling of the source domain, i.e. discretisation-independent. Conclusion: This shows that deep vectorised operators are a powerful modelling tool for cardiovascular hemodynamics estimation in coronary arteries and beyond.
coronary hemodynamics; computational fluid dynamics; machine learning; coronary simulation runtime
Settore MEDS-07/B - Malattie dell'apparato cardiovascolare
nov-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
deep.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 3 MB
Formato Adobe PDF
3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1197643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact