Let $\K$ be a field of degree $n$ and discriminant with absolute value $\Delta$. Under the assumption of the validity of the Generalized Riemann Hypothesis, we provide a new algorithm to compute a set of generators of the class group of $\K$ and prove that the norm of the ideals in that set is $\leq (4-1/(2n))\log^2\Delta$, except for a finite number of fields of degree $n\leq 4$. For those fields, the conclusion holds with the slightly larger limit $(4-1/(2n)+1/(2n^2))\log^2\Delta$. When the cardinality of $\Cl$ is odd the bounds improve to $(4-2/(3n))\log^2\Delta$, again with finitely many exceptions in degree $n\leq 4$, and to $(4-2/(3n)+3/(8n^2))\log^2\Delta$ without exceptions.

Breaking the 4 barrier for the bound of a generating set of the class group / L. Grenié, G. Molteni. - In: MATHEMATICS OF COMPUTATION. - ISSN 1088-6842. - 94:356(2025), pp. 3145-3163. [10.1090/mcom/4114]

Breaking the 4 barrier for the bound of a generating set of the class group

G. Molteni
Ultimo
2025

Abstract

Let $\K$ be a field of degree $n$ and discriminant with absolute value $\Delta$. Under the assumption of the validity of the Generalized Riemann Hypothesis, we provide a new algorithm to compute a set of generators of the class group of $\K$ and prove that the norm of the ideals in that set is $\leq (4-1/(2n))\log^2\Delta$, except for a finite number of fields of degree $n\leq 4$. For those fields, the conclusion holds with the slightly larger limit $(4-1/(2n)+1/(2n^2))\log^2\Delta$. When the cardinality of $\Cl$ is odd the bounds improve to $(4-2/(3n))\log^2\Delta$, again with finitely many exceptions in degree $n\leq 4$, and to $(4-2/(3n)+3/(8n^2))\log^2\Delta$ without exceptions.
Class group; generators of the class group
Settore MATH-03/A - Analisi matematica
Settore MATH-02/A - Algebra
2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
molteni-Breaking the 4 barrier.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 816.68 kB
Formato Adobe PDF
816.68 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1197515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact