The Internet of Things (IoT) is evolving rapidly in many sectors, including personal health, home automation, industrial controls, and smart city infrastructures, with the number of connected devices constantly increasing. However, this growth has also increased the vulnerability space for Distributed Denial of Service (DDoS) attacks, which are becoming more frequent and sophisticated, making it difficult to detect them using conventional methods. To address this issue, machine learning approaches, especially deep learning-based techniques, have emerged as powerful tools for detecting and mitigating DDoS attacks. This paper reviews the state-of-the-art deep learning techniques for detecting DDoS attacks in the IoT. We have analyzed the origin, evolution, and taxonomy of DDoS attacks, benchmark datasets, ongoing research challenges, and future research directions.

Deep Learning for DDoS Attack Detection in IoT: A Survey / M.B. Anley, A. Genovese, V. Piuri (COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE). - In: Security and Cryptography. Revised Selected Papers / [a cura di] P. Samarati; S. De Capitani di Vimercati. - [s.l] : Springer, 2026. - ISBN 9783032095985. - pp. 99-121 (( 20 - 21. SECRYPT International Conference : July 10–12, , and 21st SECRYPT International Conference : July 8-10 Roma : Dijon 2023-2024 [10.1007/978-3-032-09598-5_5].

Deep Learning for DDoS Attack Detection in IoT: A Survey

M.B. Anley
Primo
;
A. Genovese
Penultimo
;
V. Piuri
Ultimo
2026

Abstract

The Internet of Things (IoT) is evolving rapidly in many sectors, including personal health, home automation, industrial controls, and smart city infrastructures, with the number of connected devices constantly increasing. However, this growth has also increased the vulnerability space for Distributed Denial of Service (DDoS) attacks, which are becoming more frequent and sophisticated, making it difficult to detect them using conventional methods. To address this issue, machine learning approaches, especially deep learning-based techniques, have emerged as powerful tools for detecting and mitigating DDoS attacks. This paper reviews the state-of-the-art deep learning techniques for detecting DDoS attacks in the IoT. We have analyzed the origin, evolution, and taxonomy of DDoS attacks, benchmark datasets, ongoing research challenges, and future research directions.
No
English
Settore INFO-01/A - Informatica
Settore IINF-05/A - Sistemi di elaborazione delle informazioni
Capitolo o Saggio
Esperti anonimi
Pubblicazione scientifica
   Green responsibLe privACy preservIng dAta operaTIONs
   GLACIATION
   EUROPEAN COMMISSION
   101070141

   Edge AI Technologies for Optimised Performance Embedded Processing (EdgeAI)
   EdgeAI
   MINISTERO DELLO SVILUPPO ECONOMICO
   101097300

   SEcurity and RIghts in the CyberSpace (SERICS)
   SERICS
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   codice identificativo PE00000014
Security and Cryptography. Revised Selected Papers
P. Samarati; S. De Capitani di Vimercati
Springer
2026
99
121
23
9783032095985
2588
Volume a diffusione internazionale
No
SECRYPT International Conference : July 10–12, , and 21st SECRYPT International Conference : July 8-10
Roma : Dijon
2023-2024
20 - 21
Convegno internazionale
crossref
Aderisco
M.B. Anley, A. Genovese, V. Piuri
Book Part (author)
mixed
268
Deep Learning for DDoS Attack Detection in IoT: A Survey / M.B. Anley, A. Genovese, V. Piuri (COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE). - In: Security and Cryptography. Revised Selected Papers / [a cura di] P. Samarati; S. De Capitani di Vimercati. - [s.l] : Springer, 2026. - ISBN 9783032095985. - pp. 99-121 (( 20 - 21. SECRYPT International Conference : July 10–12, , and 21st SECRYPT International Conference : July 8-10 Roma : Dijon 2023-2024 [10.1007/978-3-032-09598-5_5].
info:eu-repo/semantics/bookPart
3
Prodotti della ricerca::03 - Contributo in volume
File in questo prodotto:
File Dimensione Formato  
978-3-032-09598-5_5.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 629.24 kB
Formato Adobe PDF
629.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ccis25.pdf

embargo fino al 25/11/2026

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 4.19 MB
Formato Adobe PDF
4.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1197319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 0
social impact