We present HST2EUCLID, a novel Python code to generate Euclid realistic mock images in the HE, JE, YE, and IE photometric bands based on panchromatic Hubble Space Telescope observations. The software was used to create a simulated database of Euclid images for the 27 galaxy clusters observed during the Cluster Lensing And Supernova survey with Hubble (CLASH) and the Hubble Frontier Fields (HFF) program. Since the mock images were generated from real observations, they incorporate, by construction, all the complexity of the observed galaxy clusters. The simulated Euclid data of the galaxy cluster MACS J0416.1−2403 were then used to explore the possibility of developing strong lensing models based on the Euclid data. In this context, complementary photometric or spectroscopic follow-up campaigns are required to measure the redshifts of multiple images and cluster member galaxies. By Euclidising six parallel blank fields obtained during the HFF program, we provide an estimate of the number of galaxies detectable in Euclid images per deg2 per magnitude bin (number counts) and the distribution of the galaxy sizes. Finally, we present a preview of the Chandra Deep Field South that will be observed during the Euclid Deep Survey and two examples of galaxy-scale strong lensing systems residing in regions of the sky covered by the Euclid Wide Survey. The methodology developed in this work lends itself to several additional applications, as simulated Euclid fields based on HST (or JWST) imaging with extensive spectroscopic information can be used to validate the feasibility of legacy science cases or to train deep learning techniques in advance, thus preparing for a timely exploitation of the Euclid Survey data.
Euclid preparation: LXXIV. Euclidised observations of Hubble Frontier Fields and CLASH galaxy clusters / N. Null, P. Bergamini, M. Meneghetti, G. Angora, L. Bazzanini, P. Rosati, C. Grillo, M. Lombardi, D. Abriola, A. Mercurio, F. Calura, G. Despali, J.M. Diego, R. Gavazzi, P. Hudelot, L. Leuzzi, G. Mahler, E. Merlin, C. Scarlata, N. Aghanim, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, M. Baldi, S. Bardelli, R. Bender, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, F.J. Castander, M. Castellano, G. Castignani, S. Cavuoti, A. Cimatti, C. Colodro-Conde, G. Congedo, C.J. Conselice, L. Conversi, Y. Copin, F. Courbin, H.M. Courtois, M. Cropper, A. Da Silva, H. Degaudenzi, G. De Lucia, A.M. Di Giorgio, J. Dinis, M. Douspis, F. Dubath, X. Dupac, S. Dusini, M. Farina, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Garilli, K. George, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, L. Guzzo, S.V.H. Haugan, W. Holmes, I. Hook, F. Hormuth, A. Hornstrup, K. Jahnke, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, B. Kubik, M. Kümmel, M. Kunz, H. Kurki-Suonio, R. Laureijs, S. Ligori, P.B. Lilje, V. Lindholm, I. Lloro, G. Mainetti, D. Maino, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, M. Martinelli, N. Martinet, F. Marulli, R. Massey, S. Maurogordato, E. Medinaceli, S. Mei, Y. Mellier, G. Meylan, M. Moresco, L. Moscardini, E. Munari, R. Nakajima, C. Neissner, S.-. Niemi, J.W. Nightingale, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L.A. Popa, L. Pozzetti, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, Z. Sakr, A.G. Sánchez, D. Sapone, B. Sartoris, M. Schirmer, P. Schneider, A. Secroun, E. Sefusatti, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, L. Stanco, J. Steinwagner, P. Tallada-Crespí, H.I. Teplitz, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, T. Vassallo, G. Verdoes Kleijn, A. Veropalumbo, Y. Wang, J. Weller, G. Zamorani, E. Zucca, A. Biviano, M. Bolzonella, A. Boucaud, E. Bozzo, C. Burigana, M. Calabrese, D. Di Ferdinando, J.A. Escartin Vigo, R. Farinelli, J. Gracia-Carpio, N. Mauri, V. Scottez, M. Tenti, M. Viel, M. Wiesmann, Y. Akrami, V. Allevato, S. Anselmi, M. Ballardini, M. Bethermin, A. Blanchard, L. Blot, S. Borgani, A.S. Borlaff, S. Bruton, R. Cabanac, A. Calabro, G. Cañas-Herrera, A. Cappi, C.S. Carvalho, T. Castro, K.C. Chambers, S. Contarini, T. Contini, A.R. Cooray, O. Cucciati, B. De Caro, G. Desprez, A. Díaz-Sánchez, S. Di Domizio, H. Dole, S. Escoffier, A.G. Ferrari, I. Ferrero, F. Finelli, F. Fornari, L. Gabarra, K. Ganga, J. García-Bellido, V. Gautard, E. Gaztanaga, F. Giacomini, G. Gozaliasl, A. Hall, H. Hildebrandt, J. Hjorth, M. Huertas-Company, A. Jimenez Muñoz, J.J.E. Kajava, V. Kansal, D. Karagiannis, C.C. Kirkpatrick, L. Legrand, G. Libet, A. Loureiro, G. Maggio, M. Magliocchetti, C. Mancini, F. Mannucci, R. Maoli, C.J.A.P. Martins, S. Matthew, L. Maurin, R.B. Metcalf, P. Monaco, C. Moretti, G. Morgante, N.A. Walton, J. Odier, L. Patrizii, A. Pezzotta, M. Pöntinen, V. Popa, C. Porciani, D. Potter, I. Risso, P.-. Rocci, M. Sahlén, A. Schneider, M. Sereno, P. Simon, A. Spurio Mancini, S.A. Stanford, C. Tao, G. Testera, R. Teyssier, S. Toft, S. Tosi, A. Troja, M. Tucci, C. Valieri, J. Valiviita, D. Vergani, G. Verza. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 702:(2025 Nov), pp. A73.1-A73.17. [10.1051/0004-6361/202553984]
Euclid preparation: LXXIV. Euclidised observations of Hubble Frontier Fields and CLASH galaxy clusters
P. Bergamini
Primo
;C. Grillo;M. Lombardi;D. Abriola;C. Carbone;L. Guzzo;D. Maino;
2025
Abstract
We present HST2EUCLID, a novel Python code to generate Euclid realistic mock images in the HE, JE, YE, and IE photometric bands based on panchromatic Hubble Space Telescope observations. The software was used to create a simulated database of Euclid images for the 27 galaxy clusters observed during the Cluster Lensing And Supernova survey with Hubble (CLASH) and the Hubble Frontier Fields (HFF) program. Since the mock images were generated from real observations, they incorporate, by construction, all the complexity of the observed galaxy clusters. The simulated Euclid data of the galaxy cluster MACS J0416.1−2403 were then used to explore the possibility of developing strong lensing models based on the Euclid data. In this context, complementary photometric or spectroscopic follow-up campaigns are required to measure the redshifts of multiple images and cluster member galaxies. By Euclidising six parallel blank fields obtained during the HFF program, we provide an estimate of the number of galaxies detectable in Euclid images per deg2 per magnitude bin (number counts) and the distribution of the galaxy sizes. Finally, we present a preview of the Chandra Deep Field South that will be observed during the Euclid Deep Survey and two examples of galaxy-scale strong lensing systems residing in regions of the sky covered by the Euclid Wide Survey. The methodology developed in this work lends itself to several additional applications, as simulated Euclid fields based on HST (or JWST) imaging with extensive spectroscopic information can be used to validate the feasibility of legacy science cases or to train deep learning techniques in advance, thus preparing for a timely exploitation of the Euclid Survey data.| File | Dimensione | Formato | |
|---|---|---|---|
|
aa53984-25_compressed.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
17.58 MB
Formato
Adobe PDF
|
17.58 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




