Modelling induced polarization (IP) effects in electromagnetic (EM) data is increasingly becoming a standard tool in mineral exploration, but the industry standard is still based on one-dimensional (1D) forward and Jacobian modelling. We have developed a three-dimensional (3D) electromagnetic forward and inversion method within the EEMverter modelling platform, incorporating IP effects. The 3D computations are performed in the frequency domain using the vector finite element method and then transformed into the time domain via Hankel transformation. This approach enables modeling of any IP parameterization, ranging from the simple constant phase angle model to a full Debye decomposition. Furthermore, 3D forward modeling mesh and inversion mesh are built independently: an Octree forward mesh is designed for efficient spatial segmentation for single or multiple soundings, while the inversion parameters are defined on a structured model mesh, which is linked to the forward meshes via interpolation. In conjunction with the development of a full 3D EM-IP inversion, we introduce a novel 3D inversion workflow. This workflow allows for hybrid 1D-3D computations, both sequentially and spatially, enabling 3D modeling exclusively in the most significant and interesting areas of the survey. We tested the hybrid 1D-3D inversion workflow using airborne electromagnetic (AEM) data acquired by Xcalibur with the HeliTEM system in the Staré Ransko area (Czech Republic), known for its gabbro-peridotite rocks hosting nickel-copper±cobalt, platinum group element (Ni-Cu±Co, PGE) mineralization. The results demonstrate that the hybrid inversion effectively addresses the challenges of 3D modeling on large-scale datasets. It enhances interpretation reliability in regions with strong 3D effects and shows a significant spatial correlation between resistivity and chargeability phase anomalies and known mineral deposits. Moreover, both synthetic and field data indicate that the resistivity parameter is more sensitive to 3D effects than the chargeability phase parameter.

3D EM inversion considering induced polarization effect / J. Chen, F. Dauti, V. Wertich, A. Viezzoli, B. Zhang, G. Fiandaca. - In: GEOPHYSICAL JOURNAL INTERNATIONAL. - ISSN 0956-540X. - (2025), pp. ggaf462.1-ggaf462.34. [Epub ahead of print] [10.1093/gji/ggaf462]

3D EM inversion considering induced polarization effect

J. Chen
Primo
;
F. Dauti;G. Fiandaca
Ultimo
2025

Abstract

Modelling induced polarization (IP) effects in electromagnetic (EM) data is increasingly becoming a standard tool in mineral exploration, but the industry standard is still based on one-dimensional (1D) forward and Jacobian modelling. We have developed a three-dimensional (3D) electromagnetic forward and inversion method within the EEMverter modelling platform, incorporating IP effects. The 3D computations are performed in the frequency domain using the vector finite element method and then transformed into the time domain via Hankel transformation. This approach enables modeling of any IP parameterization, ranging from the simple constant phase angle model to a full Debye decomposition. Furthermore, 3D forward modeling mesh and inversion mesh are built independently: an Octree forward mesh is designed for efficient spatial segmentation for single or multiple soundings, while the inversion parameters are defined on a structured model mesh, which is linked to the forward meshes via interpolation. In conjunction with the development of a full 3D EM-IP inversion, we introduce a novel 3D inversion workflow. This workflow allows for hybrid 1D-3D computations, both sequentially and spatially, enabling 3D modeling exclusively in the most significant and interesting areas of the survey. We tested the hybrid 1D-3D inversion workflow using airborne electromagnetic (AEM) data acquired by Xcalibur with the HeliTEM system in the Staré Ransko area (Czech Republic), known for its gabbro-peridotite rocks hosting nickel-copper±cobalt, platinum group element (Ni-Cu±Co, PGE) mineralization. The results demonstrate that the hybrid inversion effectively addresses the challenges of 3D modeling on large-scale datasets. It enhances interpretation reliability in regions with strong 3D effects and shows a significant spatial correlation between resistivity and chargeability phase anomalies and known mineral deposits. Moreover, both synthetic and field data indicate that the resistivity parameter is more sensitive to 3D effects than the chargeability phase parameter.
Electromagnetic theory; Induced polarization; Finite element method; Inverse theory; Numerical modelling
Settore GEOS-04/B - Geofisica applicata
   Sustainable exploration for orthomagmatic (critical) raw materials in the EU: Charting the road to the green energy transition (SEMACRET)
   SEMACRET
   EUROPEAN COMMISSION
   101057741
2025
14-nov-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
3D EM inversion considering induced polarization effect.pdf

accesso aperto

Descrizione: online first, accepted manuscript
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 3.68 MB
Formato Adobe PDF
3.68 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1196745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact