Hidradenitis suppurativa (HS) is a chronic autoinflammatory skin disorder with a complex genetic and molecular basis. To advance its characterization, we applied InterOmics, a novel bioinformatics pipeline integrating whole exome sequencing (WES) and RNA sequencing (RNA-seq), to saliva and skin biopsy samples from six HS patients. This approach enabled a comprehensive multiomics investigation, identifying disease-associated genetic variants and transcriptomic alterations. A key innovation of InterOmics is the Multiomics Variant Category, which classifies variants based on DNA and RNA data, capturing regulatory mechanisms such as allele-specific expression, RNA editing, nonsense-mediated decay, and gain-of-function mutations. Our findings highlight HLA gene variants and keratin-related mutations as potential contributors to HS pathogenesis. By bridging genomic and transcriptomic data, InterOmics enhances variant interpretation. This study underscores the power of multiomics-driven approaches in deciphering complex diseases, paving the way for precision medicine in HS.

Genomic profiling in hidradenitis suppurativa: InterOmics pipeline for DNA-RNA sequencing highlights HLA variants, keratin-associated mutations and extracellular matrix alterations as contributing factors to HS pathogenesis / L.A. Cavalcanti Brandão, R. Rodrigues De Moura, B. Rodrigo Assunção, C. Del Vecchio, A.P. D'Adamo, G. Ratzinger, B. Böckle, N. Frischhut, W. Jaschke, M. Schmuth, M. Suleman, A.V. Marzano, C. Moltrasio, P.M. Tricarico, S. Crovella. - In: PLOS ONE. - ISSN 1932-6203. - 20:6(2025), pp. e0326458.1-e0326458.11. [Epub ahead of print] [10.1371/journal.pone.0326458]

Genomic profiling in hidradenitis suppurativa: InterOmics pipeline for DNA-RNA sequencing highlights HLA variants, keratin-associated mutations and extracellular matrix alterations as contributing factors to HS pathogenesis

C. Del Vecchio;A.V. Marzano;
2025

Abstract

Hidradenitis suppurativa (HS) is a chronic autoinflammatory skin disorder with a complex genetic and molecular basis. To advance its characterization, we applied InterOmics, a novel bioinformatics pipeline integrating whole exome sequencing (WES) and RNA sequencing (RNA-seq), to saliva and skin biopsy samples from six HS patients. This approach enabled a comprehensive multiomics investigation, identifying disease-associated genetic variants and transcriptomic alterations. A key innovation of InterOmics is the Multiomics Variant Category, which classifies variants based on DNA and RNA data, capturing regulatory mechanisms such as allele-specific expression, RNA editing, nonsense-mediated decay, and gain-of-function mutations. Our findings highlight HLA gene variants and keratin-related mutations as potential contributors to HS pathogenesis. By bridging genomic and transcriptomic data, InterOmics enhances variant interpretation. This study underscores the power of multiomics-driven approaches in deciphering complex diseases, paving the way for precision medicine in HS.
Settore MEDS-10/C - Malattie cutanee e veneree
2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
pone.0326458.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 578.86 kB
Formato Adobe PDF
578.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1195522
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact