An element in the Brauer group of a general complex projective K 3 surface S defines a sublattice of the transcendental lattice of S. We consider those elements of prime order for which this sublattice is Hodge-isometric to the transcendental lattice of another K3 surface X . We recall that this defines a finite map between moduli spaces of polarized K3 surfaces and we compute its degree. We show how the Picard lattice of X determines the Picard lattice of S in the case that the Picard number of X is two.

Some remarks on Brauer classes of K3-type / F. Galluzzi, B. Van Geemen. - In: RENDICONTI DEL SEMINARIO MATEMATICO. - ISSN 0373-1243. - 821:1(2024), pp. 127-143.

Some remarks on Brauer classes of K3-type

B. Van Geemen
Ultimo
2024

Abstract

An element in the Brauer group of a general complex projective K 3 surface S defines a sublattice of the transcendental lattice of S. We consider those elements of prime order for which this sublattice is Hodge-isometric to the transcendental lattice of another K3 surface X . We recall that this defines a finite map between moduli spaces of polarized K3 surfaces and we compute its degree. We show how the Picard lattice of X determines the Picard lattice of S in the case that the Picard number of X is two.
Settore MATH-02/B - Geometria
2024
https://seminariomatematico.polito.it/rendiconti/82-1.html
Article (author)
File in questo prodotto:
File Dimensione Formato  
2024_GvG_RemarksBrauerClassesK3.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 288.24 kB
Formato Adobe PDF
288.24 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1194527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact