An element in the Brauer group of a general complex projective K 3 surface S defines a sublattice of the transcendental lattice of S. We consider those elements of prime order for which this sublattice is Hodge-isometric to the transcendental lattice of another K3 surface X . We recall that this defines a finite map between moduli spaces of polarized K3 surfaces and we compute its degree. We show how the Picard lattice of X determines the Picard lattice of S in the case that the Picard number of X is two.
Some remarks on Brauer classes of K3-type / F. Galluzzi, B. Van Geemen. - In: RENDICONTI DEL SEMINARIO MATEMATICO. - ISSN 0373-1243. - 821:1(2024), pp. 127-143.
Some remarks on Brauer classes of K3-type
B. Van GeemenUltimo
2024
Abstract
An element in the Brauer group of a general complex projective K 3 surface S defines a sublattice of the transcendental lattice of S. We consider those elements of prime order for which this sublattice is Hodge-isometric to the transcendental lattice of another K3 surface X . We recall that this defines a finite map between moduli spaces of polarized K3 surfaces and we compute its degree. We show how the Picard lattice of X determines the Picard lattice of S in the case that the Picard number of X is two.| File | Dimensione | Formato | |
|---|---|---|---|
|
2024_GvG_RemarksBrauerClassesK3.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
288.24 kB
Formato
Adobe PDF
|
288.24 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




