We present a machine learning-based approach for characterising the environment that affects the dynamics of an open quantum system. We focus on the case of an exactly solvable spin-boson model, where the system-environment interaction, whose strength is encoded in the spectral density, induces pure dephasing. By using artificial neural networks trained on the Fourier-transformed time evolution of some observables of the system, we perform both classification—distinguishing sub-Ohmic, Ohmic, and super-Ohmic spectral densities—and regression—thus estimating key parameters of the spectral density function, when the latter is expressed through a power law. Our results demonstrate high classification accuracy and robust parameter estimation, highlighting the potential of machine learning as a powerful tool for probing environmental features in quantum systems and advancing quantum noise spectroscopy.

A machine learning based approach to the identification of spectral densities in quantum open systems / J. Barr, S. Mukherjee, A. Ferraro, M. Paternostro, G. Zicari. - In: THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS. - ISSN 1951-6355. - (2025 Sep 21), pp. 1-13. [Epub ahead of print] [10.1140/epjs/s11734-025-01954-9]

A machine learning based approach to the identification of spectral densities in quantum open systems

A. Ferraro;
2025

Abstract

We present a machine learning-based approach for characterising the environment that affects the dynamics of an open quantum system. We focus on the case of an exactly solvable spin-boson model, where the system-environment interaction, whose strength is encoded in the spectral density, induces pure dephasing. By using artificial neural networks trained on the Fourier-transformed time evolution of some observables of the system, we perform both classification—distinguishing sub-Ohmic, Ohmic, and super-Ohmic spectral densities—and regression—thus estimating key parameters of the spectral density function, when the latter is expressed through a power law. Our results demonstrate high classification accuracy and robust parameter estimation, highlighting the potential of machine learning as a powerful tool for probing environmental features in quantum systems and advancing quantum noise spectroscopy.
English
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Articolo
Esperti anonimi
Pubblicazione scientifica
   Efficient Verification of Quantum computing architectures with Bosons (VeriQuB)
   VeriQuB
   EUROPEAN COMMISSION
   101114899
21-set-2025
Springer
1
13
13
Epub ahead of print
Periodico con rilevanza internazionale
scopus
Aderisco
info:eu-repo/semantics/article
A machine learning based approach to the identification of spectral densities in quantum open systems / J. Barr, S. Mukherjee, A. Ferraro, M. Paternostro, G. Zicari. - In: THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS. - ISSN 1951-6355. - (2025 Sep 21), pp. 1-13. [Epub ahead of print] [10.1140/epjs/s11734-025-01954-9]
reserved
Prodotti della ricerca::01 - Articolo su periodico
5
262
Article (author)
Periodico con Impact Factor
J. Barr, S. Mukherjee, A. Ferraro, M. Paternostro, G. Zicari
File in questo prodotto:
File Dimensione Formato  
s11734-025-01954-9.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1194519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact