Models developed by the knowledge representation and reasoning community permit us to study defeasible inference based on argumentation and data. Scientific reasoning progresses by evaluating scientific hypotheses based on data and meta-evidence. Meta-evidence can be understood as arguments for discounting or even ignoring data or other meta-evidence. Non-monotonic reasoning is underpinned by non-monotonic logic. We here develop a method for modelling scientific inferences within formal argumentation models. We show how these models capture hypothesis testing, meta-analysis, strong inference and non-monotonic consequence relations.

Knowledge Representation, Scientific Argumentation and Non-monotonic Logic / J. Landes, E.A. Corsi, P. Baldi (LOGIC, ARGUMENTATION & REASONING). - In: Perspectives on Logics for Data-driven Reasoning / [a cura di] H. Hosni, J. Landes. - [s.l] : Springer, 2024. - ISBN 9783031778919. - pp. 155-179 [10.1007/978-3-031-77892-6_8]

Knowledge Representation, Scientific Argumentation and Non-monotonic Logic

J. Landes;E.A. Corsi;P. Baldi
2024

Abstract

Models developed by the knowledge representation and reasoning community permit us to study defeasible inference based on argumentation and data. Scientific reasoning progresses by evaluating scientific hypotheses based on data and meta-evidence. Meta-evidence can be understood as arguments for discounting or even ignoring data or other meta-evidence. Non-monotonic reasoning is underpinned by non-monotonic logic. We here develop a method for modelling scientific inferences within formal argumentation models. We show how these models capture hypothesis testing, meta-analysis, strong inference and non-monotonic consequence relations.
Formal argumentation; Hypothesis testing; Knowledge representation and reasoning; Meta-evidence; Non-monotonic logic; Rényi-Ulam game; Sally Clark; Strong inference
Settore PHIL-02/A - Logica e filosofia della scienza
Settore MATH-01/A - Logica matematica
Settore INFO-01/A - Informatica
2024
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
B2_LCB_2024.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 474.19 kB
Formato Adobe PDF
474.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1194155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact