We extend the logical categories framework to first order modal logic. In our modal categories, modal operators are applied directly to subobjects and interact with the background factorization system. We prove a Joyal-style representation theorem into relational structures formalizing a ‘counterpart’ notion. We investigate saturation conditions related to definability questions and we enrich our framework with quotients and disjoint sums, thus leading to the notion of a modal (quasi) pretopos. We finally show a way to build syntactic categories out of first order modal theories.

First-order modal logic via logical categories / S. Ghilardi, J. Marquès. - In: THE JOURNAL OF SYMBOLIC LOGIC. - ISSN 0022-4812. - (2025). [Epub ahead of print] [10.1017/jsl.2025.10161]

First-order modal logic via logical categories

S. Ghilardi;
2025

Abstract

We extend the logical categories framework to first order modal logic. In our modal categories, modal operators are applied directly to subobjects and interact with the background factorization system. We prove a Joyal-style representation theorem into relational structures formalizing a ‘counterpart’ notion. We investigate saturation conditions related to definability questions and we enrich our framework with quotients and disjoint sums, thus leading to the notion of a modal (quasi) pretopos. We finally show a way to build syntactic categories out of first order modal theories.
Settore MATH-01/A - Logica matematica
2025
4-nov-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
modal_cat_paper.pdf

accesso riservato

Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Nessuna licenza
Dimensione 589.66 kB
Formato Adobe PDF
589.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1193295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact