We extend the logical categories framework to first order modal logic. In our modal categories, modal operators are applied directly to subobjects and interact with the background factorization system. We prove a Joyal-style representation theorem into relational structures formalizing a ‘counterpart’ notion. We investigate saturation conditions related to definability questions and we enrich our framework with quotients and disjoint sums, thus leading to the notion of a modal (quasi) pretopos. We finally show a way to build syntactic categories out of first order modal theories.
First-order modal logic via logical categories / S. Ghilardi, J. Marquès. - In: THE JOURNAL OF SYMBOLIC LOGIC. - ISSN 0022-4812. - (2025). [Epub ahead of print] [10.1017/jsl.2025.10161]
First-order modal logic via logical categories
S. Ghilardi;
2025
Abstract
We extend the logical categories framework to first order modal logic. In our modal categories, modal operators are applied directly to subobjects and interact with the background factorization system. We prove a Joyal-style representation theorem into relational structures formalizing a ‘counterpart’ notion. We investigate saturation conditions related to definability questions and we enrich our framework with quotients and disjoint sums, thus leading to the notion of a modal (quasi) pretopos. We finally show a way to build syntactic categories out of first order modal theories.| File | Dimensione | Formato | |
|---|---|---|---|
|
modal_cat_paper.pdf
accesso riservato
Tipologia:
Pre-print (manoscritto inviato all'editore)
Licenza:
Nessuna licenza
Dimensione
589.66 kB
Formato
Adobe PDF
|
589.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




