This study focuses on the estimation of the Emax dose–response model, a widely utilized framework in clinical trials, experiments in pharmacology, agriculture, environmental science, and more. Existing challenges in obtaining maximum likelihood estimates (MLE) for model parameters are often ascribed to computational issues but, in reality, stem from the absence of a MLE. Our contribution provides new understanding and control of all the experimental situations that practitioners might face, guiding them in the estimation process. We derive the exact MLE for a three-point experimental design and identify the two scenarios where the MLE fails to exist. To address these challenges, we propose utilizing Firth’s modified score, which we express analytically as a function of the experimental design. Through a simulation study, we demonstrate that the Firth modification yields a finite estimate in one of the problematic scenarios. For the remaining case, we introduce a design-augmentation strategy akin to a hypothesis test.

Maximum likelihood estimation under the Emax model: existence, geometry and efficiency / G. Aletti, N. Flournoy, C. May, C. Tommasi. - In: STATISTICAL PAPERS. - ISSN 1613-9798. - 66:5(2025), pp. 106.1-106.28. [10.1007/s00362-025-01673-2]

Maximum likelihood estimation under the Emax model: existence, geometry and efficiency

G. Aletti
Primo
;
C. May
Penultimo
;
C. Tommasi
Ultimo
2025

Abstract

This study focuses on the estimation of the Emax dose–response model, a widely utilized framework in clinical trials, experiments in pharmacology, agriculture, environmental science, and more. Existing challenges in obtaining maximum likelihood estimates (MLE) for model parameters are often ascribed to computational issues but, in reality, stem from the absence of a MLE. Our contribution provides new understanding and control of all the experimental situations that practitioners might face, guiding them in the estimation process. We derive the exact MLE for a three-point experimental design and identify the two scenarios where the MLE fails to exist. To address these challenges, we propose utilizing Firth’s modified score, which we express analytically as a function of the experimental design. Through a simulation study, we demonstrate that the Firth modification yields a finite estimate in one of the problematic scenarios. For the remaining case, we introduce a design-augmentation strategy akin to a hypothesis test.
D-optimum experimental design; Dose-finding; Nonlinear regression; Score modification;
Settore STAT-01/A - Statistica
Settore MATH-03/B - Probabilità e statistica matematica
   Optimal and adaptive designs for modern medical experimentation
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   2022TRB44L_002

   Multi-objective optimal design of experiments
   UK Research and Innovation
   EPSRC
   EP/T021624/1
2025
10-giu-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
s00362-025-01673-2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1192996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact