The Dark Energy Spectroscopic Instrument (DESI) Collaboration has obtained robust measurements of baryon acoustic oscillations in the redshift range 0.1 <𝑧 <4.2, based on the Lyman-𝛼 forest and galaxies from data release 2. We combine these measurements with cosmic microwave background (CMB) data from Planck and the Atacama Cosmology Telescope to place our tightest constraints yet on the sum of neutrino masses. Assuming the cosmological Λ⁢CDM model and three degenerate neutrino states, we find ∑𝑚𝜈 <0.0642  eV (95%) with a marginalized error of 𝜎⁡(∑𝑚𝜈) =0.020  eV. We also constrain the effective number of neutrino species, finding 𝑁eff =3.2⁢3+0.35 −0.34 (95%), in line with the Standard Model prediction. When accounting for neutrino oscillation constraints, we find a preference for the normal mass ordering and an upper limit on the lightest neutrino mass of 𝑚𝑙 <0.023  eV (95%). However, we determine using frequentist and Bayesian methods that our constraints are in tension with the lower limits derived from neutrino oscillations. Correcting for the physical boundary at zero mass, we report a 95% Feldman-Cousins upper limit of ∑𝑚𝜈 <0.053  eV, breaching the lower limit from neutrino oscillations. Considering a more general Bayesian analysis with an effective cosmological neutrino mass parameter, ∑𝑚𝜈,eff, that allows for negative energy densities and removes unsatisfactory prior weight effects, we derive constraints that are in 3⁢𝜎 tension with the same oscillation limit, while the error rises to 𝜎⁡(∑𝑚𝜈,eff) =0.053  eV. In the absence of unknown systematics, this finding could be interpreted as a hint of new physics not necessarily related to neutrinos. The preference of DESI and CMB data for an evolving dark energy model offers one possible solution. In the 𝑤0⁢𝑤𝑎⁢CDM model, we find ∑𝑚𝜈 <0.163  eV (95%), relaxing the neutrino tension. These constraints all rely on the effects of neutrinos on the cosmic expansion history. Using full-shape power spectrum measurements of data release 1 galaxies, we place complementary constraints that rely on neutrino free streaming. Our strongest such limit in Λ⁢CDM, using selected CMB priors, is ∑𝑚𝜈 <0.193  eV (95%).

Constraints on neutrino physics from DESI DR2 BAO and DR1 full shape / W. Elbers, A. Aviles, H. . Noriega, D. Chebat, A. Menegas, C. . Frenk, C. Garcia-Quintero, D. Gonzalez, M. Ishak, O. Lahav, K. Naidoo, G. Niz, C. Yèche, M. Abdul-Karim, S. Ahlen, O. Alves, U. Andrade, E. Armengaud, J. Behera, S. Benzvi, D. Bianchi, S. Brieden, A. Brodzeller, D. Brooks, E. Burtin, R. Calderon, R. Canning, A. Carnero Rosell, L. Casas, F. . Castander, M. Charles, E. Chaussidon, J. Chaves-Montero, T. Claybaugh, S. Cole, A. . Cooper, A. Cuceu, K. . Dawson, A. De La Macorra, A. De Mattia, N. Deiosso, A. Dey, B. Dey, Z. Ding, P. Doel, D. . Eisenstein, S. Ferraro, A. Font-Ribera, J. . Forero-Romero, L. . Garrison, E. Gaztañaga, H. Gil-Marín, S.G.A. Gontcho, A. . Gonzalez-Morales, G. Gutierrez, S. He, M. Herbold, H. . Herrera-Alcantar, C. Howlett, D. Huterer, S. Juneau, R. Kehoe, D. Kirkby, T. Kisner, A. Kremin, C. Lamman, M. Landriau, L. Le Guillou, A. Leauthaud, M. . Levi, Q. Li, K. Lodha, C. Magneville, M. Manera, P. Martini, W. . Matthewson, A. Meisner, J. Mena-Fernández, R. Miquel, J. Moustakas, S. Nadathur, J. . Newman, E. Paillas, N. Palanque-Delabrouille, W. . Percival, M. . Pieri, C. Poppett, F. Prada, I. Pérez-Ràfols, D. Rabinowitz, C. Ramírez-Pérez, M. Rashkovetskyi, C. Ravoux, H. Rivera-Morales, J. Rohlf, A. . Ross, G. Rossi, V. Ruhlmann-Kleider, L. Samushia, E. Sanchez, D. Schlegel, M. Schubnell, H. Seo, F. Sinigaglia, D. Sprayberry, T. Tan, G. Tarlé, P. Taylor, W. Turner, M. Vargas-Magaña, L. Verde, M. Walther, B. . Weaver, A. Whitford, M. Wolfson, P. Zarrouk, C. Zhao, R. Zhou, H. Zou, N. Null. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 112:8(2025), pp. 1-33. [10.1103/w9pk-xsk7]

Constraints on neutrino physics from DESI DR2 BAO and DR1 full shape

D. Bianchi;M. Manera;P. Martini;F. Prada;E. Sanchez;F. Sinigaglia;
2025

Abstract

The Dark Energy Spectroscopic Instrument (DESI) Collaboration has obtained robust measurements of baryon acoustic oscillations in the redshift range 0.1 <𝑧 <4.2, based on the Lyman-𝛼 forest and galaxies from data release 2. We combine these measurements with cosmic microwave background (CMB) data from Planck and the Atacama Cosmology Telescope to place our tightest constraints yet on the sum of neutrino masses. Assuming the cosmological Λ⁢CDM model and three degenerate neutrino states, we find ∑𝑚𝜈 <0.0642  eV (95%) with a marginalized error of 𝜎⁡(∑𝑚𝜈) =0.020  eV. We also constrain the effective number of neutrino species, finding 𝑁eff =3.2⁢3+0.35 −0.34 (95%), in line with the Standard Model prediction. When accounting for neutrino oscillation constraints, we find a preference for the normal mass ordering and an upper limit on the lightest neutrino mass of 𝑚𝑙 <0.023  eV (95%). However, we determine using frequentist and Bayesian methods that our constraints are in tension with the lower limits derived from neutrino oscillations. Correcting for the physical boundary at zero mass, we report a 95% Feldman-Cousins upper limit of ∑𝑚𝜈 <0.053  eV, breaching the lower limit from neutrino oscillations. Considering a more general Bayesian analysis with an effective cosmological neutrino mass parameter, ∑𝑚𝜈,eff, that allows for negative energy densities and removes unsatisfactory prior weight effects, we derive constraints that are in 3⁢𝜎 tension with the same oscillation limit, while the error rises to 𝜎⁡(∑𝑚𝜈,eff) =0.053  eV. In the absence of unknown systematics, this finding could be interpreted as a hint of new physics not necessarily related to neutrinos. The preference of DESI and CMB data for an evolving dark energy model offers one possible solution. In the 𝑤0⁢𝑤𝑎⁢CDM model, we find ∑𝑚𝜈 <0.163  eV (95%), relaxing the neutrino tension. These constraints all rely on the effects of neutrinos on the cosmic expansion history. Using full-shape power spectrum measurements of data release 1 galaxies, we place complementary constraints that rely on neutrino free streaming. Our strongest such limit in Λ⁢CDM, using selected CMB priors, is ∑𝑚𝜈 <0.193  eV (95%).
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
2503.14744v3.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1190135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact