We consider weighted (Formula presented.) -Laplace type equations with homogeneous Neumann boundary conditions in convex domains, where the weight is a log-concave function which may degenerate at the boundary. In the case of bounded domains, we provide sharp global second-order estimates. For unbounded domains, we prove local estimates at the boundary. The results are new even for the case (Formula presented.).
Second-order regularity for degenerate p-Laplace type equations with log-concave weights / C.A. Antonini, G. Ciraolo, F. Pagliarin. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 112:3(2025), pp. e70299.1-e70299.42. [10.1112/jlms.70299]
Second-order regularity for degenerate p-Laplace type equations with log-concave weights
C.A. AntoniniPrimo
;G. Ciraolo
Secondo
;
2025
Abstract
We consider weighted (Formula presented.) -Laplace type equations with homogeneous Neumann boundary conditions in convex domains, where the weight is a log-concave function which may degenerate at the boundary. In the case of bounded domains, we provide sharp global second-order estimates. For unbounded domains, we prove local estimates at the boundary. The results are new even for the case (Formula presented.).| File | Dimensione | Formato | |
|---|---|---|---|
|
55 - Antonini Ciraolo Pagliarin - J London.pdf
accesso aperto
Descrizione: open access
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
608.84 kB
Formato
Adobe PDF
|
608.84 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




