et X be a finite-dimensional, noetherian scheme. Antieau, Gepner and Heller conjectured that its derived category of perfect complexes has a bounded t-structure if and only if X is regular. We prove a generalization, and to do so we sharpen some of the techniques so far obtained in the theory of approximable triangulated categories.

Bounded t-structures on the category of perfect complexes / A. Neeman. - In: ACTA MATHEMATICA. - ISSN 0001-5962. - 233:2(2024), pp. 239-284. [10.4310/ACTA.2024.v233.n2.a2]

Bounded t-structures on the category of perfect complexes

A. Neeman
2024

Abstract

et X be a finite-dimensional, noetherian scheme. Antieau, Gepner and Heller conjectured that its derived category of perfect complexes has a bounded t-structure if and only if X is regular. We prove a generalization, and to do so we sharpen some of the techniques so far obtained in the theory of approximable triangulated categories.
No
English
bounded t-structures; derived categories; perfect complexes;
Settore MATH-02/B - Geometria
Articolo
Esperti anonimi
Pubblicazione scientifica
   Triangulated categories and their applications, chiefly to algebraic geometry (TriCatApp)
   TriCatApp
   EUROPEAN COMMISSION
2024
Springer
233
2
239
284
46
Pubblicato
Periodico con rilevanza internazionale
manual
Aderisco
info:eu-repo/semantics/article
Bounded t-structures on the category of perfect complexes / A. Neeman. - In: ACTA MATHEMATICA. - ISSN 0001-5962. - 233:2(2024), pp. 239-284. [10.4310/ACTA.2024.v233.n2.a2]
open
Prodotti della ricerca::01 - Articolo su periodico
1
262
Article (author)
Periodico con Impact Factor
A. Neeman
File in questo prodotto:
File Dimensione Formato  
boundedtstructuresonperfects.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 655.33 kB
Formato Adobe PDF
655.33 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1189820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex 2
social impact