In a 2006 article Schlichting conjectured that the negative K–theory of any abelian category must vanish. This conjecture was generalized in a 2019 article by Antieau, Gepner and Heller, who hypothesized that the negative K–theory of any category with a bounded t–structure must vanish. Both conjectures will be shown to be false.

A counterexample to vanishing conjectures for negative K-theory / A. Neeman. - In: INVENTIONES MATHEMATICAE. - ISSN 0020-9910. - 225:(2021), pp. 427-452. [10.1007/s00222-021-01034-4]

A counterexample to vanishing conjectures for negative K-theory

A. Neeman
2021

Abstract

In a 2006 article Schlichting conjectured that the negative K–theory of any abelian category must vanish. This conjecture was generalized in a 2019 article by Antieau, Gepner and Heller, who hypothesized that the negative K–theory of any category with a bounded t–structure must vanish. Both conjectures will be shown to be false.
No
English
Settore MATH-02/B - Geometria
Articolo
Esperti anonimi
Pubblicazione scientifica
   Triangulated categories and their applications, chiefly to algebraic geometry (TriCatApp)
   TriCatApp
   EUROPEAN COMMISSION
2021
225
427
452
26
Pubblicato
Periodico con rilevanza internazionale
manual
Aderisco
info:eu-repo/semantics/article
A counterexample to vanishing conjectures for negative K-theory / A. Neeman. - In: INVENTIONES MATHEMATICAE. - ISSN 0020-9910. - 225:(2021), pp. 427-452. [10.1007/s00222-021-01034-4]
partially_open
Prodotti della ricerca::01 - Articolo su periodico
1
262
Article (author)
Periodico con Impact Factor
A. Neeman
File in questo prodotto:
File Dimensione Formato  
acounterexampletovanishingconj.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 352.65 kB
Formato Adobe PDF
352.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2006.16536v2.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Creative commons
Dimensione 272.77 kB
Formato Adobe PDF
272.77 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1189636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact