Life-history transitions require major reprogramming at the behavioral and physiological level. Mating and reproductive maturation are known to trigger changes in gene transcription in reproductive tissues in a wide range of organisms, but we understand little about the molecular consequences of a failure to mate or become reproductively mature, and it is not clear to what extent these processes trigger neural as well as physiological changes. In this study, we examined the molecular processes underpinning the behavioral changes that accompany the major life-history transitions in a key pollinator, the bumblebee Bombus terrestris. We compared neuro-transcription in queens that succeeded or failed in switching from virgin and immature states, to mated and reproductively mature states. Both successes and failures were associated with distinct molecular profiles, illustrating how development during adulthood triggers distinct molecular profiles within a single caste of a eusocial insect. Failures in both mating and reproductive maturation were explained by a general up-regulation of brain gene transcription. We identified 21 genes that were highly connected in a gene coexpression network analysis: nine genes are involved in neural processes and four are regulators of gene expression. This suggests that negotiating life-history transitions involves significant neural processing and reprogramming, and not just changes in physiology. These findings provide novel insights into basic life-history transitions of an insect. Failure to mate or to become reproductively mature is an overlooked component of variation in natural systems, despite its prevalence in many sexually reproducing organisms, and deserves deeper investigation in the future.

Neurogenomic signatures of successes and failures in life-history transitions in a key insect pollinator / F. Manfredini, A.E. Romero, I. Pedroso, A. Paccanaro, S. Sumner, M.J.F. Brown. - In: GENOME BIOLOGY AND EVOLUTION. - ISSN 1759-6653. - 9:11(2017), pp. 3059-3072. [10.1093/gbe/evx220]

Neurogenomic signatures of successes and failures in life-history transitions in a key insect pollinator

F. Manfredini
Primo
Formal Analysis
;
2017

Abstract

Life-history transitions require major reprogramming at the behavioral and physiological level. Mating and reproductive maturation are known to trigger changes in gene transcription in reproductive tissues in a wide range of organisms, but we understand little about the molecular consequences of a failure to mate or become reproductively mature, and it is not clear to what extent these processes trigger neural as well as physiological changes. In this study, we examined the molecular processes underpinning the behavioral changes that accompany the major life-history transitions in a key pollinator, the bumblebee Bombus terrestris. We compared neuro-transcription in queens that succeeded or failed in switching from virgin and immature states, to mated and reproductively mature states. Both successes and failures were associated with distinct molecular profiles, illustrating how development during adulthood triggers distinct molecular profiles within a single caste of a eusocial insect. Failures in both mating and reproductive maturation were explained by a general up-regulation of brain gene transcription. We identified 21 genes that were highly connected in a gene coexpression network analysis: nine genes are involved in neural processes and four are regulators of gene expression. This suggests that negotiating life-history transitions involves significant neural processing and reprogramming, and not just changes in physiology. These findings provide novel insights into basic life-history transitions of an insect. Failure to mate or to become reproductively mature is an overlooked component of variation in natural systems, despite its prevalence in many sexually reproducing organisms, and deserves deeper investigation in the future.
Bombus terrestris; Brain; Bumblebee; Gene network; Mating; Reproductive maturation
Settore AGRI-05/A - Entomologia generale e applicata
Settore BIOS-03/A - Zoologia
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
evx220.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 985.35 kB
Formato Adobe PDF
985.35 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1189238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
  • OpenAlex 15
social impact