This paper proposes an approach for the analysis of the effects of attacks in connected autonomous vehicles by simulated attack injection and statistical model checking technique. The vehicles, together with the co-ordination algorithm among vehicles and the attacks are formalized using hybrid automata in UPPAAL framework. Then, the statistical model checker, UPPAAL-SMC, allows to study the resilience of the system to attacks across a range of circumstances and uncertainties. The approach is applied to a platoon of vehicles, and properties of the system under attack in case of various driver patterns of the platoon's leader and parameters of a data alteration attack are analyzed.

Statistical Model Checking for the Analysis of Attacks in Connected Autonomous Vehicles / C. Bernardeschi, A. Fagiolini, D. Pagani, C. Quadri - In: CNSRiedizione. - [s.l] : Institute of Electrical and Electronics Engineers (IEEE), 2025 Oct 15. - ISBN 979-8-3315-3856-9. - pp. 1-6 (( Intervento presentato al 13. convegno Conference on Communications and Network Security : 8–11 September tenutosi a Avignon (France) nel 2025 [10.1109/cns66487.2025.11194938].

Statistical Model Checking for the Analysis of Attacks in Connected Autonomous Vehicles

C. Quadri
Ultimo
2025

Abstract

This paper proposes an approach for the analysis of the effects of attacks in connected autonomous vehicles by simulated attack injection and statistical model checking technique. The vehicles, together with the co-ordination algorithm among vehicles and the attacks are formalized using hybrid automata in UPPAAL framework. Then, the statistical model checker, UPPAAL-SMC, allows to study the resilience of the system to attacks across a range of circumstances and uncertainties. The approach is applied to a platoon of vehicles, and properties of the system under attack in case of various driver patterns of the platoon's leader and parameters of a data alteration attack are analyzed.
No
English
Statistical Model Checking; Autonomous Vehicles; Cybersecurity; UPPAAL; Platoon Resilience;
Settore INFO-01/A - Informatica
Settore IINF-05/A - Sistemi di elaborazione delle informazioni
Intervento a convegno
Esperti anonimi
Pubblicazione scientifica
   FORESEEN: FORmal mEthodS for attack dEtEction in autonomous driviNg systems
   FORESEEN
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   P2022WYAEW_003
CNS
Riedizione
Institute of Electrical and Electronics Engineers (IEEE)
15-ott-2025
set-2025
1
6
6
979-8-3315-3856-9
979-8-3315-3857-6
Volume a diffusione internazionale
No
Conference on Communications and Network Security : 8–11 September
Avignon (France)
2025
13
Institute of Electrical and Electronics Engineers (IEEE)
Convegno internazionale
Intervento inviato
crossref
Aderisco
C. Bernardeschi, A. Fagiolini, D. Pagani, C. Quadri
Book Part (author)
open
273
Statistical Model Checking for the Analysis of Attacks in Connected Autonomous Vehicles / C. Bernardeschi, A. Fagiolini, D. Pagani, C. Quadri - In: CNSRiedizione. - [s.l] : Institute of Electrical and Electronics Engineers (IEEE), 2025 Oct 15. - ISBN 979-8-3315-3856-9. - pp. 1-6 (( Intervento presentato al 13. convegno Conference on Communications and Network Security : 8–11 September tenutosi a Avignon (France) nel 2025 [10.1109/cns66487.2025.11194938].
info:eu-repo/semantics/bookPart
4
Prodotti della ricerca::03 - Contributo in volume
File in questo prodotto:
File Dimensione Formato  
FORESEEN_Platooning_UPPAAL.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1189195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact