In this paper, we investigate a forced incompressible Navier–Stokes equation coupled with a parabolic type equation of Q-tensors in a domain U⊂R3. In the case U is bounded, we prove the existence of a global strong solution when the initial data are sufficiently small, improving a result in Xiao’s paper (J Differ Equ 262:1291–1316, 2017). The key tool of the proof is a maximum principle. Then, we establish also a result of continuous dependence of solutions on the initial data. Finally, if U=R3, based on a result of Du et al. (Arch Rational Mech Anal 238:749–803, 2020), we give an interesting regularity criterium just via the B˙∞,∞-1 norm of u and the L∞ norm of the initial data Q0.
Global Regularity to the liquid crystal flows of Q-tensor model / Z. Chen, E. Terraneo. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5454. - 22:5(2025 Aug), pp. 111.1-111.26. [10.1007/s00009-025-02883-6]
Global Regularity to the liquid crystal flows of Q-tensor model
E. Terraneo
Ultimo
2025
Abstract
In this paper, we investigate a forced incompressible Navier–Stokes equation coupled with a parabolic type equation of Q-tensors in a domain U⊂R3. In the case U is bounded, we prove the existence of a global strong solution when the initial data are sufficiently small, improving a result in Xiao’s paper (J Differ Equ 262:1291–1316, 2017). The key tool of the proof is a maximum principle. Then, we establish also a result of continuous dependence of solutions on the initial data. Finally, if U=R3, based on a result of Du et al. (Arch Rational Mech Anal 238:749–803, 2020), we give an interesting regularity criterium just via the B˙∞,∞-1 norm of u and the L∞ norm of the initial data Q0.| File | Dimensione | Formato | |
|---|---|---|---|
|
Chen_Terraneo_Revised.pdf
embargo fino al 01/09/2026
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza:
Creative commons
Dimensione
359.43 kB
Formato
Adobe PDF
|
359.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
s00009-025-02883-6.pdf
accesso riservato
Licenza:
Nessuna licenza
Dimensione
529.39 kB
Formato
Adobe PDF
|
529.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




