In this paper, we investigate a forced incompressible Navier–Stokes equation coupled with a parabolic type equation of Q-tensors in a domain U⊂R3. In the case U is bounded, we prove the existence of a global strong solution when the initial data are sufficiently small, improving a result in Xiao’s paper (J Differ Equ 262:1291–1316, 2017). The key tool of the proof is a maximum principle. Then, we establish also a result of continuous dependence of solutions on the initial data. Finally, if U=R3, based on a result of Du et al. (Arch Rational Mech Anal 238:749–803, 2020), we give an interesting regularity criterium just via the B˙∞,∞-1 norm of u and the L∞ norm of the initial data Q0.

Global Regularity to the liquid crystal flows of Q-tensor model / Z. Chen, E. Terraneo. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5454. - 22:5(2025 Aug), pp. 111.1-111.26. [10.1007/s00009-025-02883-6]

Global Regularity to the liquid crystal flows of Q-tensor model

E. Terraneo
Ultimo
2025

Abstract

In this paper, we investigate a forced incompressible Navier–Stokes equation coupled with a parabolic type equation of Q-tensors in a domain U⊂R3. In the case U is bounded, we prove the existence of a global strong solution when the initial data are sufficiently small, improving a result in Xiao’s paper (J Differ Equ 262:1291–1316, 2017). The key tool of the proof is a maximum principle. Then, we establish also a result of continuous dependence of solutions on the initial data. Finally, if U=R3, based on a result of Du et al. (Arch Rational Mech Anal 238:749–803, 2020), we give an interesting regularity criterium just via the B˙∞,∞-1 norm of u and the L∞ norm of the initial data Q0.
continuous dependence; global strong solution; Q-tensor; regularity criteria;
Settore MATH-03/A - Analisi matematica
ago-2025
24-giu-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
Chen_Terraneo_Revised.pdf

embargo fino al 01/09/2026

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 359.43 kB
Formato Adobe PDF
359.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
s00009-025-02883-6.pdf

accesso riservato

Licenza: Nessuna licenza
Dimensione 529.39 kB
Formato Adobe PDF
529.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1188661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact