Background: One of the most debated topics in experimental and clinical endocrinology is the impact of hypo- and hyper-somatotropism on the extension/shortening of the lifespan, the results of experimental, clinical, and epidemiological studies being extremely conflicting. Biological age, a surrogate of lifespan, can be measured through different methods, including the age-related epigenetic modifications of DNA. Objective: The present study aimed to evaluate the biological (epigenetic) age and age acceleration in a group of growth hormone (GH)-deficient (GHD) children (F/M = 5/5; age: 11.0 ± 2.7 years), treated with recombinant human GH (rhGH) for 6 months at a daily dose of 0.025–0.035 mg/kg. Results: Treatment with rhGH significantly increased height velocity and circulating insulin-like growth factor 1 (IGF-1) levels. Biological and chronological ages were significantly correlated at baseline and after 6 months of rhGH replacement therapy. Treatment with rhGH reduced age acceleration, an effect that became significant only after adjustment for IGF-1. In a linear regression model for longitudinal data, after adjustment for rhGH treatment, age acceleration was significantly associated with IGF-1 levels, an effect missing when considering the interaction rhGH treatment × age acceleration at 6 months of rhGH treatment. Conclusions: (rh)GH, when administered to GHD children, exerts anti-ageing effects, which become evident after removal of the presumably pro-ageing effects of IGF-1.

Evaluation of Epigenetic Age Acceleration in Growth Hormone (GH)-Deficient Children After 6 Months of Recombinant Human GH Replacement Therapy: Anti-Ageing GH vs. Pro-Ageing Insulin-like Growth Factor 1 (IGF-1)? / A.E. Rigamonti, V. Bollati, C. Favero, B. Albetti, A. Bondesan, N. Marazzi, S.G. Cella, A. Sartorio. - In: JOURNAL OF CLINICAL MEDICINE. - ISSN 2077-0383. - 14:11(2025 May 29), pp. 3840.1-3840.12. [10.3390/jcm14113840]

Evaluation of Epigenetic Age Acceleration in Growth Hormone (GH)-Deficient Children After 6 Months of Recombinant Human GH Replacement Therapy: Anti-Ageing GH vs. Pro-Ageing Insulin-like Growth Factor 1 (IGF-1)?

A.E. Rigamonti
Primo
;
V. Bollati
Secondo
;
C. Favero;B. Albetti;S.G. Cella
Penultimo
;
2025

Abstract

Background: One of the most debated topics in experimental and clinical endocrinology is the impact of hypo- and hyper-somatotropism on the extension/shortening of the lifespan, the results of experimental, clinical, and epidemiological studies being extremely conflicting. Biological age, a surrogate of lifespan, can be measured through different methods, including the age-related epigenetic modifications of DNA. Objective: The present study aimed to evaluate the biological (epigenetic) age and age acceleration in a group of growth hormone (GH)-deficient (GHD) children (F/M = 5/5; age: 11.0 ± 2.7 years), treated with recombinant human GH (rhGH) for 6 months at a daily dose of 0.025–0.035 mg/kg. Results: Treatment with rhGH significantly increased height velocity and circulating insulin-like growth factor 1 (IGF-1) levels. Biological and chronological ages were significantly correlated at baseline and after 6 months of rhGH replacement therapy. Treatment with rhGH reduced age acceleration, an effect that became significant only after adjustment for IGF-1. In a linear regression model for longitudinal data, after adjustment for rhGH treatment, age acceleration was significantly associated with IGF-1 levels, an effect missing when considering the interaction rhGH treatment × age acceleration at 6 months of rhGH treatment. Conclusions: (rh)GH, when administered to GHD children, exerts anti-ageing effects, which become evident after removal of the presumably pro-ageing effects of IGF-1.
DNA methylation; IGF-1; age acceleration; biological age; chronological age; epigenetic age; growth hormone deficiency; recombinant human growth hormone; replacement therapy; short stature;
Settore BIOS-11/A - Farmacologia
Settore MEDS-08/A - Endocrinologia
Settore MEDS-25/B - Medicina del lavoro
29-mag-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
RIGAMONTI.121.pdf

accesso aperto

Descrizione: REPRINT
Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 612.77 kB
Formato Adobe PDF
612.77 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1187079
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact