This study evaluated chemical and physical parameters, volatile fatty acids (VFAs), pathogens indicators, ammonia, and greenhouse gas (GHG: CO2, CH4, N2O) emissions from fresh and digested dairy manure under controlled laboratory conditions, simulating storage at 18 °C and 28 °C. Manure and digestate samples were collected during summer 2023 from three dairy farms in Northern Italy, all operating similar mono-substrate, mesophilic anaerobic digesters at 42 °C with short hydraulic retention times (HRT) of ~30 days, instead of the longer HRTs commonly used (up to 90 days). Gas emissions were measured using a static chamber method over 40 min sessions, and cumulative GHG losses were converted to CO2 equivalents. Anaerobic digestion significantly increased ammonia emissions (p < 0.001), in comparison with fresh manure samples. Anaerobic digestion affected pH variations, while reducing CH4 and N2O emissions by up to 67% and 50%, respectively. Storage at 28 °C increased total GHG fluxes by 74% for fresh manure and 66% for digestate. Residual methane emissions suggest incomplete digestion, likely due to short HRT and low digestion temperatures. Among pathogens, only clostridia showed significant reduction post-digestion. Overall, anaerobic digestion effectively lowers the global warming potential (GWP) of dairy manure, but higher environmental temperatures exacerbate ammonia and GHG emissions during storage, highlighting the need for optimized post-digestion handling in warm climates.
Microbial Load, Physical–Chemical Characteristics, Ammonia, and GHG Emissions from Fresh Dairy Manure and Digestates According to Different Environmental Temperatures / E. Buoio, E. Ighina, A. Costa. - In: AGRICULTURE. - ISSN 2077-0472. - 15:18(2025), pp. 1931.1-1931.15. [10.3390/agriculture15181931]
Microbial Load, Physical–Chemical Characteristics, Ammonia, and GHG Emissions from Fresh Dairy Manure and Digestates According to Different Environmental Temperatures
E. BuoioPrimo
Writing – Original Draft Preparation
;E. IghinaSecondo
Membro del Collaboration Group
;A. Costa
Ultimo
Writing – Review & Editing
2025
Abstract
This study evaluated chemical and physical parameters, volatile fatty acids (VFAs), pathogens indicators, ammonia, and greenhouse gas (GHG: CO2, CH4, N2O) emissions from fresh and digested dairy manure under controlled laboratory conditions, simulating storage at 18 °C and 28 °C. Manure and digestate samples were collected during summer 2023 from three dairy farms in Northern Italy, all operating similar mono-substrate, mesophilic anaerobic digesters at 42 °C with short hydraulic retention times (HRT) of ~30 days, instead of the longer HRTs commonly used (up to 90 days). Gas emissions were measured using a static chamber method over 40 min sessions, and cumulative GHG losses were converted to CO2 equivalents. Anaerobic digestion significantly increased ammonia emissions (p < 0.001), in comparison with fresh manure samples. Anaerobic digestion affected pH variations, while reducing CH4 and N2O emissions by up to 67% and 50%, respectively. Storage at 28 °C increased total GHG fluxes by 74% for fresh manure and 66% for digestate. Residual methane emissions suggest incomplete digestion, likely due to short HRT and low digestion temperatures. Among pathogens, only clostridia showed significant reduction post-digestion. Overall, anaerobic digestion effectively lowers the global warming potential (GWP) of dairy manure, but higher environmental temperatures exacerbate ammonia and GHG emissions during storage, highlighting the need for optimized post-digestion handling in warm climates.| File | Dimensione | Formato | |
|---|---|---|---|
|
agriculture-15-01931 (1).pdf
accesso aperto
Descrizione: Article
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




