Given a canonical algebraically integrable foliation on a klt projective variety, we study the variation of the ample models of the associated adjoint foliated structures with respect to the parameter. When the foliation is of general type, we show the finiteness of ample models if the parameter is sufficiently close to $1$. When the ambient variety is of general type, we show the finiteness of ample models for all parameters. A key ingredient in our proof is the equivalence between the existence of minimal models and the termination of MMP with scaling for algebraically integrable adjoint foliated structures.

Variation of algebraically integrable adjoint foliated structures / P. Cascini, J. Liu, F. Meng, R. Svaldi, L. Xie. - (2025 Oct 02).

Variation of algebraically integrable adjoint foliated structures

R. Svaldi
Penultimo
;
2025

Abstract

Given a canonical algebraically integrable foliation on a klt projective variety, we study the variation of the ample models of the associated adjoint foliated structures with respect to the parameter. When the foliation is of general type, we show the finiteness of ample models if the parameter is sufficiently close to $1$. When the ambient variety is of general type, we show the finiteness of ample models for all parameters. A key ingredient in our proof is the equivalence between the existence of minimal models and the termination of MMP with scaling for algebraically integrable adjoint foliated structures.
Mathematics - Algebraic Geometry; Mathematics - Algebraic Geometry; Mathematics - Dynamical Systems; 14E30, 37F75
Settore MATH-02/B - Geometria
2-ott-2025
http://arxiv.org/abs/2510.02498v1
File in questo prodotto:
File Dimensione Formato  
2510.02498v1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Creative commons
Dimensione 501.94 kB
Formato Adobe PDF
501.94 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1187055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact