We present the first extraction of transverse-momentum-dependent distributions of unpolarized quarks from experimental Drell-Yan data using neural networks to parametrize their nonperturbative part. We show that neural networks outperform traditional parametrizations providing a more accurate description of data. This Letter establishes the feasibility of using neural networks to explore the multidimensional partonic structure of hadrons and paves the way for more accurate determinations based on machine-learning techniques. MAP (Multi-dimensional Analyses of Partonic distributions) Collaboration)
Neural-Network Extraction of Unpolarized Transverse-Momentum-Dependent Distributions / A. Bacchetta, V. Bertone, C. Bissolotti, M. Cerutti, M. Radici, S. Rodini, L. Rossi. - In: PHYSICAL REVIEW LETTERS. - ISSN 1079-7114. - 135:2(2025), pp. 021904.1-021904.6. [10.1103/csc2-bj91]
Neural-Network Extraction of Unpolarized Transverse-Momentum-Dependent Distributions
L. RossiUltimo
2025
Abstract
We present the first extraction of transverse-momentum-dependent distributions of unpolarized quarks from experimental Drell-Yan data using neural networks to parametrize their nonperturbative part. We show that neural networks outperform traditional parametrizations providing a more accurate description of data. This Letter establishes the feasibility of using neural networks to explore the multidimensional partonic structure of hadrons and paves the way for more accurate determinations based on machine-learning techniques. MAP (Multi-dimensional Analyses of Partonic distributions) Collaboration)| File | Dimensione | Formato | |
|---|---|---|---|
|
csc2-bj91.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
398.03 kB
Formato
Adobe PDF
|
398.03 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




