We present the first extraction of transverse-momentum-dependent distributions of unpolarized quarks from experimental Drell-Yan data using neural networks to parametrize their nonperturbative part. We show that neural networks outperform traditional parametrizations providing a more accurate description of data. This Letter establishes the feasibility of using neural networks to explore the multidimensional partonic structure of hadrons and paves the way for more accurate determinations based on machine-learning techniques. MAP (Multi-dimensional Analyses of Partonic distributions) Collaboration)

Neural-Network Extraction of Unpolarized Transverse-Momentum-Dependent Distributions / A. Bacchetta, V. Bertone, C. Bissolotti, M. Cerutti, M. Radici, S. Rodini, L. Rossi. - In: PHYSICAL REVIEW LETTERS. - ISSN 1079-7114. - 135:2(2025), pp. 021904.1-021904.6. [10.1103/csc2-bj91]

Neural-Network Extraction of Unpolarized Transverse-Momentum-Dependent Distributions

L. Rossi
Ultimo
2025

Abstract

We present the first extraction of transverse-momentum-dependent distributions of unpolarized quarks from experimental Drell-Yan data using neural networks to parametrize their nonperturbative part. We show that neural networks outperform traditional parametrizations providing a more accurate description of data. This Letter establishes the feasibility of using neural networks to explore the multidimensional partonic structure of hadrons and paves the way for more accurate determinations based on machine-learning techniques. MAP (Multi-dimensional Analyses of Partonic distributions) Collaboration)
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
   High precision phenomenology at the LHC: combining strong and electroweak corrections in all-order resummation and in Monte Carlo event generators.
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   20229KEFAM_003
2025
8-lug-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
csc2-bj91.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 398.03 kB
Formato Adobe PDF
398.03 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1187023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact