We investigate the properties of self-adjointness of a two-dimensional Dirac operator on an infinite sector with infinite mass boundary conditions and in the presence of a Coulomb-type potential with the singularity placed on the vertex. In the general case, we prove the appropriate Dirac-Hardy inequality and exploit the Kato-Rellich theory. In the explicit case of a Coulomb potential, we describe the self-adjoint extensions for all the intensities of the potential relying on a radial decomposition in partial wave subspaces adapted to the infinite-mass boundary conditions. Finally, we integrate our results, giving a description of the spectrum of these operators.

Dirac–Coulomb operators with infinite mass boundary conditions in sectors / B. Cassano, M. Gallone, F. Pizzichillo. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 1089-7658. - 63:7(2022), pp. 071503.1-071503.17. (Intervento presentato al 20. convegno XX International Congress on Mathematical Physics (ICMP) : 2-7 August tenutosi a Geneva (CH) nel 2021) [10.1063/5.0089526].

Dirac–Coulomb operators with infinite mass boundary conditions in sectors

M. Gallone
Penultimo
;
2022

Abstract

We investigate the properties of self-adjointness of a two-dimensional Dirac operator on an infinite sector with infinite mass boundary conditions and in the presence of a Coulomb-type potential with the singularity placed on the vertex. In the general case, we prove the appropriate Dirac-Hardy inequality and exploit the Kato-Rellich theory. In the explicit case of a Coulomb potential, we describe the self-adjoint extensions for all the intensities of the potential relying on a radial decomposition in partial wave subspaces adapted to the infinite-mass boundary conditions. Finally, we integrate our results, giving a description of the spectrum of these operators.
Settore MATH-03/A - Analisi matematica
Settore MATH-04/A - Fisica matematica
   Mathematical Quantum Matter
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2017ASFLJR_001

   Mathematics of Density Functional Theory
   MDFT
   European Commission
   Horizon 2020 Framework Programme
   725528
2022
5-lug-2022
International Association of Mathematical Physics
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1187018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex 2
social impact