Global Navigation Satellite System (GNSS) meteorology has emerged as a valuable tool for atmospheric monitoring, providing high-resolution, near-real-time data that can significantly improve precipitation nowcasting. This study aims to enhance short-term precipitation forecasting by integrating GNSS-derived Precipitable Water Vapor (PWV)—a key indicator of atmospheric moisture—with traditional meteorological observations. A novel two-step machine learning framework is proposed that combines a Random Forest (RF) model and a Long Short-Term Memory (LSTM) neural network. The RF model first estimates current precipitation based on PWV, surface weather parameters, and auxiliary atmospheric variables. Then, the LSTM network leverages temporal dependencies within the data to predict precipitation for the subsequent hour. This hybrid method capitalizes on the RF’s ability to model complex nonlinear relationships and the LSTM’s strength in handling time series data. The results demonstrate that the proposed approach improves forecasting accuracy, particularly during extreme weather events such as intense rainfall and thunderstorms, outperforming conventional models. By integrating GNSS meteorology with advanced machine learning techniques, this study offers a promising tool for meteorological services, early warning systems, and disaster risk management. The findings highlight the potential of GNSS-based nowcasting for real-time decision-making in weather-sensitive applications.

A Two-Step Machine Learning Approach Integrating GNSS-Derived PWV for Improved Precipitation Forecasting / L. Profetto, A. Antonini, L. Fibbi, A. Ortolani, G.M. Dimitri. - In: ENTROPY. - ISSN 1099-4300. - 27:10(2025), pp. 1-16. [10.3390/e27101034]

A Two-Step Machine Learning Approach Integrating GNSS-Derived PWV for Improved Precipitation Forecasting

G.M. Dimitri
Ultimo
2025

Abstract

Global Navigation Satellite System (GNSS) meteorology has emerged as a valuable tool for atmospheric monitoring, providing high-resolution, near-real-time data that can significantly improve precipitation nowcasting. This study aims to enhance short-term precipitation forecasting by integrating GNSS-derived Precipitable Water Vapor (PWV)—a key indicator of atmospheric moisture—with traditional meteorological observations. A novel two-step machine learning framework is proposed that combines a Random Forest (RF) model and a Long Short-Term Memory (LSTM) neural network. The RF model first estimates current precipitation based on PWV, surface weather parameters, and auxiliary atmospheric variables. Then, the LSTM network leverages temporal dependencies within the data to predict precipitation for the subsequent hour. This hybrid method capitalizes on the RF’s ability to model complex nonlinear relationships and the LSTM’s strength in handling time series data. The results demonstrate that the proposed approach improves forecasting accuracy, particularly during extreme weather events such as intense rainfall and thunderstorms, outperforming conventional models. By integrating GNSS meteorology with advanced machine learning techniques, this study offers a promising tool for meteorological services, early warning systems, and disaster risk management. The findings highlight the potential of GNSS-based nowcasting for real-time decision-making in weather-sensitive applications.
GNSS meteorology; Precipitable Water Vapor (PWV); precipitation nowcasting; machine learning; short-term weather forecasting
Settore INFO-01/A - Informatica
Settore IINF-05/A - Sistemi di elaborazione delle informazioni
2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
entropy-27-01034.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1186826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact