Nowadays, two major pathways seem to be responsible for the development and progression of atherosclerosis, namely, high levels of low-density lipoprotein-cholesterol (LDL-C) and low-grade vascular inflammation. Indeed, the concentration of C-reactive protein (CRP), mirroring low-grade systemic inflammation, has been recognized as a more powerful determinant of recurrent cardiovascular (CV) events, death, and all-cause mortality than LDL-C levels. Gut microbiota (GM) dysbiosis is a causal factor for the development of different inflammatory-based pathologies, such as CV disease (CVD). In addition, pre/probiotics showed beneficial effects on GM dysbiosis, by influencing both inflammation and immunity. It has been well documented that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert triglyceride (TG)-lowering and antithrombotic effects and play a seminal role in the resolution of inflammatory processes. We showed the recent studies indicating the relationship between pharmacological reduction in inflammatory cytokines and CV outcomes. The principal aim of our review is to highlight the anti-inflammatory and immune-modulatory activities of GM, EPA, and DHA. Then, we pointed out how developing patient-specific pre/probiotic and EPA/DHA interventions alongside the standard of care (SOC) is needed in order to answer several of the questions raised, ranging from diminishing drug toxicity to including frailty individuals. Therefore, hypothetical tailored clinical studies are presented, aiming to treat all the patients at high-risk of CV events, as well as aged people.

Potential and future therapeutic applications of eicosapentaenoic/docosahexaenoic acid and probiotics in chronic low-grade inflammation / A. Amedei, I. Lamminpää, C. Parolini. - In: BIOMEDICINES. - ISSN 2227-9059. - 13:10(2025 Oct 04), pp. 2428.1-2428.22. [10.3390/biomedicines13102428]

Potential and future therapeutic applications of eicosapentaenoic/docosahexaenoic acid and probiotics in chronic low-grade inflammation

C. Parolini
Ultimo
Conceptualization
2025

Abstract

Nowadays, two major pathways seem to be responsible for the development and progression of atherosclerosis, namely, high levels of low-density lipoprotein-cholesterol (LDL-C) and low-grade vascular inflammation. Indeed, the concentration of C-reactive protein (CRP), mirroring low-grade systemic inflammation, has been recognized as a more powerful determinant of recurrent cardiovascular (CV) events, death, and all-cause mortality than LDL-C levels. Gut microbiota (GM) dysbiosis is a causal factor for the development of different inflammatory-based pathologies, such as CV disease (CVD). In addition, pre/probiotics showed beneficial effects on GM dysbiosis, by influencing both inflammation and immunity. It has been well documented that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert triglyceride (TG)-lowering and antithrombotic effects and play a seminal role in the resolution of inflammatory processes. We showed the recent studies indicating the relationship between pharmacological reduction in inflammatory cytokines and CV outcomes. The principal aim of our review is to highlight the anti-inflammatory and immune-modulatory activities of GM, EPA, and DHA. Then, we pointed out how developing patient-specific pre/probiotic and EPA/DHA interventions alongside the standard of care (SOC) is needed in order to answer several of the questions raised, ranging from diminishing drug toxicity to including frailty individuals. Therefore, hypothetical tailored clinical studies are presented, aiming to treat all the patients at high-risk of CV events, as well as aged people.
cardiovascular disease; docosahexaenoic acid; eicosapentaenoic acid; microbiota; probiotics; specialized pro-resolving mediators
Settore BIOS-11/A - Farmacologia
4-ott-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
biomedicines-13-02428.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1186738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact