We classify the self-adjoint realizations of the Laplace-Beltrami operator minimally defined on an infinite cylinder equipped with an incomplete Riemannian metric of Grushin type, in the class of metrics yielding an infinite deficiency index. Such realizations are naturally interpreted as Hamiltonians governing the geometric confinement of a Schrödinger quantum particle away from the singularity, or the dynamical transmission across the singularity. In particular, we characterize all physically meaningful extensions qualified by explicit local boundary conditions at the singularity. Within our general classification we retrieve those distinguished extensions previously identified in the recent literature, namely the most confining and the most transmitting one.

Quantum geometric confinement and dynamical transmission in Grushin cylinder / M. Gallone, A. Michelangeli, E. Pozzoli. - In: REVIEWS IN MATHEMATICAL PHYSICS. - ISSN 0129-055X. - 34:7(2022 Aug), pp. 2250018.1-2250018.91. [10.1142/S0129055X22500180]

Quantum geometric confinement and dynamical transmission in Grushin cylinder

M. Gallone
Primo
;
2022

Abstract

We classify the self-adjoint realizations of the Laplace-Beltrami operator minimally defined on an infinite cylinder equipped with an incomplete Riemannian metric of Grushin type, in the class of metrics yielding an infinite deficiency index. Such realizations are naturally interpreted as Hamiltonians governing the geometric confinement of a Schrödinger quantum particle away from the singularity, or the dynamical transmission across the singularity. In particular, we characterize all physically meaningful extensions qualified by explicit local boundary conditions at the singularity. Within our general classification we retrieve those distinguished extensions previously identified in the recent literature, namely the most confining and the most transmitting one.
almost-Riemannian structure; constant-fiber direct sum; differential self-adjoint operators; Friedrichs extension; Geometric quantum confinement; Grushin manifold; Kreǐ-n-Višik-Birman self-adjoint extension theory; Laplace-Beltrami operator;
Settore MATH-04/A - Fisica matematica
Settore MATH-03/A - Analisi matematica
   Mathematical Quantum Matter
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2017ASFLJR_001

   Quantum-enhanced Sensing via Quantum Control
   QuSCo
   European Commission
   Horizon 2020 Framework Programme
   765267
ago-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
Gallone-Michelangeli-Pozzoli-Grushin2.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2003.07128v3.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Altro
Dimensione 849.76 kB
Formato Adobe PDF
849.76 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1186727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact