In this paper, starting from the well-known time monodomain model used in cardiac electrophysiology, we extend some of the results known in the existing literature, which addresses the identification of perfectly insulating regions (cavities) through partial boundary measurements. We show that, beyond the models typically employed in cardiac electrophysiology, unique recovery results for cavities can be established in more general contexts.

Determination of Cavities in Nonlinear Parabolic Systems Arising from Electrophysiology / A. Aspri (TRENDS IN MATHEMATICS). - In: Inverse Problems: Modelling and Simulation / [a cura di] M. Ruzhansky. - [s.l] : Springer Science and Business Media Deutschland, 2025. - ISBN 9783031872129. - pp. 3-10 (( Intervento presentato al 11. convegno Inverse Problems: Modeling and Simulation (IPMS) : May 26 to June 01 tenutosi a Malta nel 2024 [10.1007/978-3-031-87213-6_1].

Determination of Cavities in Nonlinear Parabolic Systems Arising from Electrophysiology

A. Aspri
Primo
Writing – Original Draft Preparation
2025

Abstract

In this paper, starting from the well-known time monodomain model used in cardiac electrophysiology, we extend some of the results known in the existing literature, which addresses the identification of perfectly insulating regions (cavities) through partial boundary measurements. We show that, beyond the models typically employed in cardiac electrophysiology, unique recovery results for cavities can be established in more general contexts.
Cavities; Inverse problems; Nonlinear boundary value problem
Settore MATH-03/A - Analisi matematica
2025
The Eurasian Association on Inverse Problems (EAIP)
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
Aspri_IPMS24.pdf

embargo fino al 01/02/2026

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 134.7 kB
Formato Adobe PDF
134.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1186563
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact