Heparan sulfate proteoglycans serve as initial attachment sites for several viruses and bacteria. Recent studies suggest that SARS-CoV-2 similarly exploits these glycosaminoglycans, facilitating conformational changes in the spike protein that promote the interaction between the receptor-binding domain (S1-RBD) and the cellular angiotensin-converting enzyme 2 receptor (ACE2), thereby triggering the virus internalization process. The molecular details that drive this process, particularly the co-receptor role of heparan sulfate (HS), remain incompletely understood. The interaction between an HS hexasaccharide (hexa) and the N343 glycosylated S1-RBD of the wild-type (WT) and Omicron variant of SARS-CoV-2 was investigated. The conformational properties of hexa with these S1-RBDs in unbound and bound states are explored using multiple independent MD simulations; the protein binding epitope of hexa, as well as the details of its interaction with S1-RBD of the Omicron variant, are characterized by comparing experimental and theoretical 1H STD NMR signals. This investigation identifies the role played by the glycosyl moiety at N343 in potentially affecting this interaction in both WT and Omicron S1-RBD, explaining the observed low specificity and multi-modal nature of the interaction between HS oligosaccharides and these S1-RBDs.
Interaction Between Heparan Sulfate Oligosaccharide and the Receptor-Binding Domain of the Wild-Type and Omicron Variant of the SARS-CoV-2 Spike Protein / M. Mandalari, M. Parafioriti, M. Ni, F. Benevelli, M. Civera, S. Elli, M. Guerrini. - In: BIOMOLECULES. - ISSN 2218-273X. - 15:9(2025 Sep 19), pp. 1343.1-1343.19. [10.3390/biom15091343]
Interaction Between Heparan Sulfate Oligosaccharide and the Receptor-Binding Domain of the Wild-Type and Omicron Variant of the SARS-CoV-2 Spike Protein
M. MandalariPrimo
;M. Civera
;
2025
Abstract
Heparan sulfate proteoglycans serve as initial attachment sites for several viruses and bacteria. Recent studies suggest that SARS-CoV-2 similarly exploits these glycosaminoglycans, facilitating conformational changes in the spike protein that promote the interaction between the receptor-binding domain (S1-RBD) and the cellular angiotensin-converting enzyme 2 receptor (ACE2), thereby triggering the virus internalization process. The molecular details that drive this process, particularly the co-receptor role of heparan sulfate (HS), remain incompletely understood. The interaction between an HS hexasaccharide (hexa) and the N343 glycosylated S1-RBD of the wild-type (WT) and Omicron variant of SARS-CoV-2 was investigated. The conformational properties of hexa with these S1-RBDs in unbound and bound states are explored using multiple independent MD simulations; the protein binding epitope of hexa, as well as the details of its interaction with S1-RBD of the Omicron variant, are characterized by comparing experimental and theoretical 1H STD NMR signals. This investigation identifies the role played by the glycosyl moiety at N343 in potentially affecting this interaction in both WT and Omicron S1-RBD, explaining the observed low specificity and multi-modal nature of the interaction between HS oligosaccharides and these S1-RBDs.| File | Dimensione | Formato | |
|---|---|---|---|
|
biomolecules-15-01343-v3.pdf
accesso aperto
Descrizione: Article
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
2.96 MB
Formato
Adobe PDF
|
2.96 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




