The rapid advancement of technology has led to a substantial increase in Waste Electrical and Electronic Equipment (WEEE), which poses significant environmental threats and increases pressure on the planet’s limited natural resources. In response, Artificial Intelligence (AI) has emerged as a key enabler of the Circular Economy (CE), particularly in improving the speed and precision of waste sorting through machine learning and computer vision techniques. Despite this progress, to our knowledge, no comprehensive, systematic review has focused specifically on the role of AI in disassembling and recycling Waste-Printed Circuit Boards (WPCBs). This paper addresses this gap by systematically reviewing recent advancements in AI-driven disassembly and sorting approaches with a focus on machine learning and vision-based methodologies. The review is structured around three areas: (1) the availability and use of datasets for AI-based WPCB recycling; (2) state-of-the-art techniques for selective disassembly and component recognition to enable fast WPCB recycling; and (3) key challenges and possible solutions aimed at enhancing the recovery of critical raw materials (CRMs) from WPCBs.

Artificial intelligence approach for waste-printed circuit board recycling: a systematic review / M. Mohsin, S. Rovetta, F. Masulli, A. Cabri. - In: COMPUTERS. - ISSN 2073-431X. - 14:8(2025 Aug), pp. 304.1-304.24. [10.3390/computers14080304]

Artificial intelligence approach for waste-printed circuit board recycling: a systematic review

A. Cabri
Ultimo
2025

Abstract

The rapid advancement of technology has led to a substantial increase in Waste Electrical and Electronic Equipment (WEEE), which poses significant environmental threats and increases pressure on the planet’s limited natural resources. In response, Artificial Intelligence (AI) has emerged as a key enabler of the Circular Economy (CE), particularly in improving the speed and precision of waste sorting through machine learning and computer vision techniques. Despite this progress, to our knowledge, no comprehensive, systematic review has focused specifically on the role of AI in disassembling and recycling Waste-Printed Circuit Boards (WPCBs). This paper addresses this gap by systematically reviewing recent advancements in AI-driven disassembly and sorting approaches with a focus on machine learning and vision-based methodologies. The review is structured around three areas: (1) the availability and use of datasets for AI-based WPCB recycling; (2) state-of-the-art techniques for selective disassembly and component recognition to enable fast WPCB recycling; and (3) key challenges and possible solutions aimed at enhancing the recovery of critical raw materials (CRMs) from WPCBs.
waste-printed circuit boards; recycling; electronic waste; deep learning; artificial intelligence; circular economy
Settore INFO-01/A - Informatica
Settore IINF-05/A - Sistemi di elaborazione delle informazioni
ago-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
computers-14-00304-v2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 569.07 kB
Formato Adobe PDF
569.07 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1185776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact