Glacier retreat due to climate change is accelerating worldwide, yet the phenomenon remains abstract for many people, especially those unfamiliar with mountain environments. The Urban Glaciology experiment, conducted during Milan’s internationally renowned “Fuorisalone” 2024 design event, aimed to bridge this perceptual gap by simulating real glacier melt processes in a busy urban square. Three large ice blocks with contrasting surface conditions (i.e., clean, dirty, and debris-covered) were exposed to springtime urban temperatures, mimicking conditions found on Alpine glaciers during summer. Over one week, the blocks produced a total of 748 L of meltwater, with dirty ice melting up to four times faster than debris-covered ice, consistent with established albedo effects. These results confirmed the thermal analogy between Milan’s spring conditions (+15 to +20 ◦C) and the ablation season on Alpine glaciers. Visitors observed the differential melting in real time, supported by visual indicators, explanatory panels, immersive virtual experiences, and direct interaction with researchers and students. Informal interviews indicated that more than 60% of participants reported a perceptual shift, recognizing for the first time that urban temperatures can replicate glacier melting conditions. By embedding a sciencebased installation in a major cultural tourism event, the experiment reached a diverse, non-traditional audience—including tourists, designers, and citizens—and encouraged reflection on the implications of glacier loss. The success of this initiative highlights the potential of replicating similar models in other cities to raise awareness of environmental change through culturally engaging experiences.
Tourism, Design and Climate Change: The Urban Glaciology Experiment at Fuorisalone 2024 Event / A. Senese, C.D. Almagioni, D. Fugazza, B. Barbagallo, L. Cresi, M. Maugeri, G.A. Diolaiuti. - In: TOURISM AND HOSPITALITY. - ISSN 2673-5768. - 6:4(2025 Oct), pp. 168.1-168.19. [10.3390/tourhosp6040168]
Tourism, Design and Climate Change: The Urban Glaciology Experiment at Fuorisalone 2024 Event
A. SenesePrimo
;C.D. Almagioni
Secondo
;D. Fugazza;B. Barbagallo;L. Cresi;M. MaugeriPenultimo
;G.A. DiolaiutiUltimo
2025
Abstract
Glacier retreat due to climate change is accelerating worldwide, yet the phenomenon remains abstract for many people, especially those unfamiliar with mountain environments. The Urban Glaciology experiment, conducted during Milan’s internationally renowned “Fuorisalone” 2024 design event, aimed to bridge this perceptual gap by simulating real glacier melt processes in a busy urban square. Three large ice blocks with contrasting surface conditions (i.e., clean, dirty, and debris-covered) were exposed to springtime urban temperatures, mimicking conditions found on Alpine glaciers during summer. Over one week, the blocks produced a total of 748 L of meltwater, with dirty ice melting up to four times faster than debris-covered ice, consistent with established albedo effects. These results confirmed the thermal analogy between Milan’s spring conditions (+15 to +20 ◦C) and the ablation season on Alpine glaciers. Visitors observed the differential melting in real time, supported by visual indicators, explanatory panels, immersive virtual experiences, and direct interaction with researchers and students. Informal interviews indicated that more than 60% of participants reported a perceptual shift, recognizing for the first time that urban temperatures can replicate glacier melting conditions. By embedding a sciencebased installation in a major cultural tourism event, the experiment reached a diverse, non-traditional audience—including tourists, designers, and citizens—and encouraged reflection on the implications of glacier loss. The success of this initiative highlights the potential of replicating similar models in other cities to raise awareness of environmental change through culturally engaging experiences.| File | Dimensione | Formato | |
|---|---|---|---|
|
tourismhosp-06-00168.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
3.46 MB
Formato
Adobe PDF
|
3.46 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




