Context. Recent observations have begun probing the early phases of disc formation, but little data yet exists on disc structure and morphology of Class 0 objects. Using simulations, we are able to lay out predictions of disc morphologies expected in future surveys of young discs. Based on detailed simulations of ab initio star formation by core collapse, we predict that early discs must be eccentric.Aims. In this Letter, we study the morphology and, in particular, the eccentricity of discs formed in non-ideal magnetohydrodynamic (MHD) collapse simulations. We attempt to show that discs formed by cloud collapse are likely to be eccentric.Methods. We ran non-ideal MHD collapse simulations in the adaptive mesh refinement code RAMSES with radiative transfer. We used state-of-the-art analysis methods to measure the disc eccentricity.Results. We find that despite no asymmetry in the initial conditions, the discs formed are eccentric, with eccentricities on the order of 0.1.Conclusions. These results may have important implications for protoplanetary disc dynamics and planet formation. The presence of eccentricity in young discs that is not seen at later stages of disc evolution is in tension with current viscous eccentricity damping models. This implies that there may be an as-yet undiscovered circularisation mechanism in circumstellar discs.

Discs are born eccentric / B. Commerçon, F. Lovascio, E. Lynch, E. Ragusa. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 689:(2024), pp. L9.1-L9.7. [10.1051/0004-6361/202449610]

Discs are born eccentric

E. Ragusa
Ultimo
2024

Abstract

Context. Recent observations have begun probing the early phases of disc formation, but little data yet exists on disc structure and morphology of Class 0 objects. Using simulations, we are able to lay out predictions of disc morphologies expected in future surveys of young discs. Based on detailed simulations of ab initio star formation by core collapse, we predict that early discs must be eccentric.Aims. In this Letter, we study the morphology and, in particular, the eccentricity of discs formed in non-ideal magnetohydrodynamic (MHD) collapse simulations. We attempt to show that discs formed by cloud collapse are likely to be eccentric.Methods. We ran non-ideal MHD collapse simulations in the adaptive mesh refinement code RAMSES with radiative transfer. We used state-of-the-art analysis methods to measure the disc eccentricity.Results. We find that despite no asymmetry in the initial conditions, the discs formed are eccentric, with eccentricities on the order of 0.1.Conclusions. These results may have important implications for protoplanetary disc dynamics and planet formation. The presence of eccentricity in young discs that is not seen at later stages of disc evolution is in tension with current viscous eccentricity damping models. This implies that there may be an as-yet undiscovered circularisation mechanism in circumstellar discs.
accretion, accretion disks; magnetohydrodynamics (MHD); methods: numerical; protoplanetary disks; stars: formation; stars: protostars;
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
   Observing Binaries in Transition Discs (ORBIT-D)
   ORBIT-D
   EUROPEAN COMMISSION
   101102964

   Early planetary formation processes during the assembling of the protoplantary disk
   DISKBUILD
   French National Research Agency (ANR)
   ANR-20-CE49-0006

   Predictions and Observations for Discs: Planetary Cores and dust Aggregates from non-ideal MHD Simulations with radiative Transfer.
   PODCAST
   European Commission
   Horizon 2020 Framework Programme
   864965
2024
11-set-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
aa49610-24.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 4.52 MB
Formato Adobe PDF
4.52 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1183817
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex 5
social impact