The increase in free fatty acid (FFA) levels in the circulation and follicular fluid in response to the negative energy balance of dairy cows has received significant attention during the last decades. However, until recently the potential effect of FFA on the periovulatory steroid environment has been overlooked. The well-orchestrated luteinizing hormone (LH) peak induces a steroid shift in the periovulatory follicle, from Estradiol-17β (E2) dominance around the LH peak towards progesterone (P4) dominance around ovulation, and is a prerequisite for optimal cytoplasmic and nuclear maturation in the oocyte and oocyte developmental competence. Recent insights in literature demonstrate a link between saturated and mono-unsaturated FFAs and the expression of gonadotrophin receptors, follicle stimulating hormone (FSH)R and LHR, including steroid related enzymes and E2 synthesis by in vitro granulosa cells. The current review will focus on the potential role of mono-unsaturated oleic acid, the most abundant FFA in follicular fluid, on steroidogenesis and its potential effect on the cumulus-oocyte-complex (COC) during final maturation. The data of this review suggest the potential for a regulatory interlinked system, which includes the oocyte secreted factor FGF10 and oleic acid, that modulates the steroidogenic switch from E2 to P4 in the periovulatory follicle, via actions that involve the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in support of the delicate and well-orchestrated dialogue between the oocyte and cumulus cells during final maturation of COCs.

Metabolic and endocrinologic interplay in the peri-ovulatory follicle to support the cumulus-oocyte-complex towards full competence / H. Aardema, P.L.A.M. Vos, A.M. Luciano, J. Buratini. - In: ANIMAL REPRODUCTION. - ISSN 1984-3143. - 22:3(2025 Sep 03), pp. 1-20. [10.1590/1984-3143-ar2025-0067]

Metabolic and endocrinologic interplay in the peri-ovulatory follicle to support the cumulus-oocyte-complex towards full competence

A.M. Luciano
Penultimo
;
2025

Abstract

The increase in free fatty acid (FFA) levels in the circulation and follicular fluid in response to the negative energy balance of dairy cows has received significant attention during the last decades. However, until recently the potential effect of FFA on the periovulatory steroid environment has been overlooked. The well-orchestrated luteinizing hormone (LH) peak induces a steroid shift in the periovulatory follicle, from Estradiol-17β (E2) dominance around the LH peak towards progesterone (P4) dominance around ovulation, and is a prerequisite for optimal cytoplasmic and nuclear maturation in the oocyte and oocyte developmental competence. Recent insights in literature demonstrate a link between saturated and mono-unsaturated FFAs and the expression of gonadotrophin receptors, follicle stimulating hormone (FSH)R and LHR, including steroid related enzymes and E2 synthesis by in vitro granulosa cells. The current review will focus on the potential role of mono-unsaturated oleic acid, the most abundant FFA in follicular fluid, on steroidogenesis and its potential effect on the cumulus-oocyte-complex (COC) during final maturation. The data of this review suggest the potential for a regulatory interlinked system, which includes the oocyte secreted factor FGF10 and oleic acid, that modulates the steroidogenic switch from E2 to P4 in the periovulatory follicle, via actions that involve the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in support of the delicate and well-orchestrated dialogue between the oocyte and cumulus cells during final maturation of COCs.
free fatty acids; peri-ovulatory follicle; hormones; cumulus-oocyte-complex; final maturation
Settore MVET-01/A - Anatomia veterinaria
Settore MVET-01/B - Fisiologia veterinaria
Settore MVET-05/B - Clinica ostetrica, ginecologica, andrologica e neonatologia veterinaria
Settore BIOS-04/A - Anatomia, biologia cellulare e biologia dello sviluppo comparate
Settore BIOS-06/A - Fisiologia
3-set-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
animreprod-22-3-e20250067-3.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1182636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact