We show that non-pointed versions of the classical homological lemmas hold in regular protomodular categories equipped with a suitable posetal monocoreflective subcategory. Examples of such categories are all protomodular varieties of universal algebras having more than one constant, like the ones of unitary rings, Boolean algebras, Heyting algebras and MV-algebras, their topological models, and the dual category of every elementary topos.
HOMOLOGICAL LEMMAS IN A NON-POINTED CONTEXT / A. Cappelletti, A. Montoli. - In: THEORY AND APPLICATIONS OF CATEGORIES. - ISSN 1201-561X. - 44:(2025), pp. 544-564.
HOMOLOGICAL LEMMAS IN A NON-POINTED CONTEXT
A. MontoliUltimo
2025
Abstract
We show that non-pointed versions of the classical homological lemmas hold in regular protomodular categories equipped with a suitable posetal monocoreflective subcategory. Examples of such categories are all protomodular varieties of universal algebras having more than one constant, like the ones of unitary rings, Boolean algebras, Heyting algebras and MV-algebras, their topological models, and the dual category of every elementary topos.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Cappelletti-Montoli, Homological lemmas in a non-pointed context.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza:
Creative commons
Dimensione
396.34 kB
Formato
Adobe PDF
|
396.34 kB | Adobe PDF | Visualizza/Apri |
|
44-18.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
396.34 kB
Formato
Adobe PDF
|
396.34 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




