We define infinite tensor product spaces that extend Fock space, and allow for implementing Bogoliubov transformations which violate the Shale or Shale–Stinespring condition. So an implementation on the usual Fock space would not be possible. Both the bosonic and fermionic case are covered. Conditions for implementability in an extended sense are stated and proved. From these, we derive conditions for a quadratic Hamiltonian to be diagonalizable by a Bogoliubov transformation that is implementable in the extended sense. We apply our results to Bogoliubov transformations from quadratic bosonic interactions and BCS models, where the Shale or Shale–Stinespring condition is violated, but an extended implementation nevertheless works.

Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition / S. Lill. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 192:4(2025 Apr), pp. 44.1-44.35. [10.1007/s10955-025-03415-y]

Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition

S. Lill
2025

Abstract

We define infinite tensor product spaces that extend Fock space, and allow for implementing Bogoliubov transformations which violate the Shale or Shale–Stinespring condition. So an implementation on the usual Fock space would not be possible. Both the bosonic and fermionic case are covered. Conditions for implementability in an extended sense are stated and proved. From these, we derive conditions for a quadratic Hamiltonian to be diagonalizable by a Bogoliubov transformation that is implementable in the extended sense. We apply our results to Bogoliubov transformations from quadratic bosonic interactions and BCS models, where the Shale or Shale–Stinespring condition is violated, but an extended implementation nevertheless works.
Bogoliubov transformations; Dressing transformations; Fock space extensions; Infinite tensor product spaces; Non-perturbative renormalization; Quadratic Hamiltonians
Settore MATH-04/A - Fisica matematica
   The Mathematics of Interacting Fermions (FermiMath)
   FermiMath
   EUROPEAN COMMISSION
   101040991
apr-2025
25-mar-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--141968265.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 697.44 kB
Formato Adobe PDF
697.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1175846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact