In this paper we define the tensor product of two A∞-categories and two A∞- functors. This tensor product makes the category of A∞-categories symmetric monoidal (up to homotopy), and the category A∞Catu/≈ a closed symmetric monoidal category. Moreover, we define the derived tensor product making Ho(A∞Cat), the homotopy category of the A∞-categories, a closed symmetric monoidal category. We also provide an explicit description of the internal homs in terms of A∞-functors.

Tensor product of A∞ -categories / M. Ornaghi. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 229:(2025 Jul 07), pp. 107987.1-107987.36. [10.1016/j.jpaa.2025.107987]

Tensor product of A∞ -categories

M. Ornaghi
Co-primo
2025

Abstract

In this paper we define the tensor product of two A∞-categories and two A∞- functors. This tensor product makes the category of A∞-categories symmetric monoidal (up to homotopy), and the category A∞Catu/≈ a closed symmetric monoidal category. Moreover, we define the derived tensor product making Ho(A∞Cat), the homotopy category of the A∞-categories, a closed symmetric monoidal category. We also provide an explicit description of the internal homs in terms of A∞-functors.
Settore MATH-02/A - Algebra
Settore MATH-02/B - Geometria
   Higher categorical and stability structures in algebraic geometry (HighCaSt)
   HighCaSt
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   R18YA3ESPJ

   Triangulated categories and their applications, chiefly to algebraic geometry
   TriCatApp
   European Commission
   Horizon Europe Framework Programme
   101095900
7-lug-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022404925001264-main.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 794.12 kB
Formato Adobe PDF
794.12 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1174518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact