In this paper we define the tensor product of two A∞-categories and two A∞- functors. This tensor product makes the category of A∞-categories symmetric monoidal (up to homotopy), and the category A∞Catu/≈ a closed symmetric monoidal category. Moreover, we define the derived tensor product making Ho(A∞Cat), the homotopy category of the A∞-categories, a closed symmetric monoidal category. We also provide an explicit description of the internal homs in terms of A∞-functors.
Tensor product of A∞ -categories / M. Ornaghi. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 229:(2025 Jul 07), pp. 107987.1-107987.36. [10.1016/j.jpaa.2025.107987]
Tensor product of A∞ -categories
M. Ornaghi
Co-primo
2025
Abstract
In this paper we define the tensor product of two A∞-categories and two A∞- functors. This tensor product makes the category of A∞-categories symmetric monoidal (up to homotopy), and the category A∞Catu/≈ a closed symmetric monoidal category. Moreover, we define the derived tensor product making Ho(A∞Cat), the homotopy category of the A∞-categories, a closed symmetric monoidal category. We also provide an explicit description of the internal homs in terms of A∞-functors.| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S0022404925001264-main.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Licenza:
Creative commons
Dimensione
794.12 kB
Formato
Adobe PDF
|
794.12 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




